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THE INVERSE MONOID ASSOCIATED TO A GROUP
AND THE SEMIDIRECT PRODUCT OF GROUPS

N. GHADBANE ∗

Abstract. In this paper, we construct an inverse monoid M (G)
associated to a given group G by using the notion of the join of
subgroups and then, by applying the left action of monoid M on
a semigroup S, we form a semigroup SωM on the set S × M .
The finally result is to build the semi direct product of groups
associated to the group action on an another group.

1. Intoduction and Preliminaries

Semigroups and monoids are convenient algebraic systems for stating
theorems on groups and playing an important role in algebra and in
many other branches of science. In semigroup theory, by using the
actions of semigroups, we can introduce new algebraic structures which
may employ in other area like computer science. The same is true for
the wreath product as a specialized product of two groups. It helps
to construct interesting examples of groups and can be applicable in
semigroups as well. For example, it is used to prove the theorem on
the decomposition of every finite semigroup automation into a step wise
combination of flip-flop and simple group automata. With the help of
these notions, we introduce new algebraic structures.

In this Section, we recall some requisite definitions and then, in Sec-
tion 2, we construct an inverse monoid M (G) associated to the group
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G. Finally, we draw our conclusions in Section 3. Throughout the
article, our notations are based on [3, 5, 7] and [11].

Let S be a non-empty set. A binary operation on S is a mapping
of S × S into S denoted by a dot ” · ” such that the image of the
ordered pares (a, b) in S × S is a · b. For the sake of simplicity, we
shall omit the dot and write ab. A semigroup S is a non-empty set
equipped with a binary operation as above such that for all x, y and
z of S, (xy) z = x (yz). A familiar example of semigroup is the set of
functions on a non-empty set X under the operation of composition.
A semigroup S with the identity element is called monoid. By given
an arbitrary semigroup S, we define S1 to be S if S is a monoid and
to be S ∪ {1} if it is not a monoid where 1x = x1 = x, for all x in S.
In this way, S1 is a monoid. An element e in S is called an idempotent
if e2 = ee = e. The set of idempotents of S is denoted by E (S). An
element a in S is called regular, if and only if a in aSa, i.e, a = axa for
some x in S. A semigroup S is called regular if every element of S is
regular. A semigroup S is said to be a inverse semigroup if for every
element a in S, there is a unique element a−1 in S in the sense that
aa−1a = a and a−1aa−1 = a−1. The element a−1 is usually called an
inverse of a in S. We recall that the following conditions on a regular
semigroup S are equivalent: (i) idempotents commute and (ii) inverses
are unique. We also note that to each a in S there corresponds a pair
of idempotents e and f such that

aa−1 = e, a−1a = f, ea = a, af = a

The idempotents e and f are called respectively the left and right
units of a. Moreover, for any two elements a, b in S; (ab)−1 = b−1a−1.
Alternatively, inverse semigroup are precisely regular semigroups whose
idempotents commute.

A subset T of S is an inverse subsemigroup of S if T is closed under
the operations of S, that is, for all t1 and t2 of T, t1t2 in T and t−11 in
T . If e in E (S) then we denote by Se, the inverse subsemigroup eSe
(See [8, 13, 1]).

A partial permutation on a set X is a bijection map from a subset of
X to a subset of X. The set of partial one-to-one transformations on a
non-empty set X under the operation of composition is an important
example of inverse semigroup. This semigroup is called the symetric
inverse semigroup on X and denoted by I (X). By a theorem of Vagner
[15] and Preston [14] every inverse semigroup S is isomorphic to an
inverse subsemigroup of I (X) for a suitable set X.
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Let S is an inverse semigroup. For each s in S take τs in I (S) where
τs (x) = sx, x in Ss−1. Then the mapping τ : S −→ I (S) defined by
τ (s) = τs is an embedding of S into I (S).

Let S be a semigroup and M be a monoid with 1 as an identity. To
simplify notation, we will write S additively, without assuming that S
is commutative. A left action of M on S is a mapping of M ×S into S
defined by (m, s) 7−→ ms and satisfying for all s, s1 and s2 in S, m,m1

and m2 in M :

(i) m (s1 + s2) = ms1 +ms2,
(ii) m1 (m2s) = (m1m2) s,

(iii) 1s = s.

Of course, this just amounts to giving a morphism from M to the
monoid of endomorphisms acting on the left of S. This action is used
to form a semigroup SωM on the set S ×M with the multiplication
defined by (s,m) (s,m′) = (s+ms′,mm′). Note that SωM is called a
semidirect product of S and M [4]. Moreover, if the elements of S×M
are represented by matrices of the form

(
1 0

s m

)
where s ∈ S and m ∈M

then the previous formula can be written as(
1 0
s m

)(
1 0
s′ m′

)
=

(
1 0

s+ms′ mm′

)
.

If the elements of S×M are denoted by (s,m), then one can define the
product MωS by (m, s) (m′, s′) = (mm′, sm′ + s′). If the elements of

M×S are represented by matrices of the form
(

m 0

s 1

)
then the formula

can be written as(
m 0
s 1

)(
m′ 0
s′ 1

)
=

(
mm′ 0

sm′ + s′ 1

)
.

Recall that, if S is a semilattice and let G is a group, then SωM is an
inverse semigroup for any left action of G on S. (See [13, 2, 9, 12])

A group G is an ordered pair (G, ·) consisting of a non void set G
equipped with a binary operation ” · ” which satisfies the following
properties:

(i) For all elements x, y and z of G, (xy) z = x (yz),
(ii) There exists an element 1G in G such that for all x ∈ G, 1Gx =

x1G = x,
(iii) For each x in G, there exists an element x−1 ∈ G such that

x−1x = xx−1 = 1G.

A non empty subset H of a group G is called a subgroup of G,
denoting byH 6 G, if and only if for all x, y ∈ H, xy ∈ H and x−1 inH.
We may use Sub(G) to stand for the set of all subgroups of the group G.
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Obviously, if H 6 G and a ∈ G, then aHa−1 ⊆ Sub(G). For subgroups
H and K of group G, the set HK = {hk : h ∈ H and k ∈ K} may not
be a subgroup of G. In fact, HK 6 G if and only if HK = KH (See
[6, 10, 1]). By H ∨K we mean the joint subgroup of subgroups H and
K of group G.

2. Main Results

In this section, we construct an inverse semigroup M (G) associated
to group G.

Theorem 2.1. Let G be a group and let the inclusion ⊆ be totally
ordered relation on Sub(G). Consider the set

M (G) = {Ha : H 6 G, a ∈ G} ,
and define an operation ” ∗ ” on M (G) by Ha ∗Kb = (H ∨ aKa−1) ab.
Then the followings hold:

(i) The set (H ∨ aKa−1) ab is the smallest element of M (G) con-
taining the product HaKb,

(ii) (M (G) , ∗) is an inverse monoid.
(iii) Sub (G) is the set of idempotents.

Proof. Since the inclusion relation ⊆ is totally ordered on Sub (G) then
we have (H ∨ aKa−1) = H or (H ∨ aKa−1) = aKa−1. Moreover, for
all K ∈ Sub(G) and a ∈ G, aKa−1 ∈ Sub(G) because the set M(G) is
closed under the operation ∗. Let x = hakb ∈ HaKb arbitrarily where
h in H and k in K. Since h is an element of H ⊆ H ∨ aKa−1 and
aka−1 ∈ aKa−1 ⊆ H ∨ aKa−1 so x = (haka−1) ab in (H ∨ aKa−1) ab
which yields that HaKb ⊆ (H ∨ aKa−1) ab. Let Lc ∈ M (G) contains
HaKb. Since HaKb ⊆ Lc, 1G ∈ H and 1G ∈ K so 1Ga1Gb = ab ∈ Lc.
Moreover HaKb ⊆ Lc and 1G ∈ K, implies Hab ⊆ Lc. On the other
hand, HaKb = (HaKa−1) ab ⊆ Lc and 1G ∈ H implies (aKa−1) ab ⊆
Lc. Therefore we get (H ∨ aKa−1) ab ⊆ Lc which completes the proof
of (i). By considering elements Ha,Kb and Lc of M (G) we have

(Ha ∗Kb) ∗ Lc =
((
H ∨ aKa−1

)
ab
)
∗ Lc,

=
((
H ∨ aKa−1

)
∨ (ab)L (ab)−1

)
(ab) c,

=
(
H ∨ aKa−1 ∨ abLb−1a−1

)
abc.

Also, we get

Ha ∗ (Kb ∗ Lc) = Ha ∗
(
K ∨ bLb−1

)
bc,

=
(
H ∨ a

(
K ∨ bLb−1

)
a−1

)
abc,

=
(
H ∨ aKa−1 ∨ abLb−1a−1

)
abc.
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This shows that the operation ∗ is associative and so M(G) is a semi-
group. If Ha ∈M (G) then

Ha ∗ {1G} = {1G} ∗Ha = Ha,

where {1G} = {1G} 1G ∈ Sub(G) ∩M(G). So, the identity element for
(M (G) , ∗) is {1G}. For the elements Ha and (a−1Ha) a−1 of M(G) we
have(

Ha ∗
(
a−1Ha

)
a−1

)
∗Ha =

(
H ∨ a

(
a−1Ha

)
a−1

)
aa−1 ∗Ha,

= (H ∨H) 1G ∗Ha = H ∗Ha = Ha.

And (
a−1Ha

)
a−1 ∗Ha ∗

(
a−1Ha

)
a−1 =

(
a−1Ha

)
a−1,

which show that (a−1Ha) a−1 is an inverse of Ha in monoid (M (G) , ∗).
So the proof of (ii) is completed. For (iii) suppose that Ha is idempo-
tent:

Ha = Ha ∗Ha =
(
H ∨ aHa−1

)
a2,

Then, in particular, a2 = 1Ga
2 ∈ Ha, i.e. a2 = ha for some h ∈ H.

Hence a = h ∈ H so Ha = H. This means that the idempotents
of (M (G) , ∗) are precisely the subgroups of G. Since for any two
subgroups H,K of G, H ∗K = K ∗H = H ∨K thus the idempotents
commute and so (M (G) , ∗) is an inverse monoid. �

Remark 2.2. For each Ha ∈M (G), the map τHa : M(G)→M(G) de-
fined by τHa (Kb) = (H ∨ aKa−1) ab where Kb ∈M(G) ∗ (a−1Ha) a−1

is an element of I(M(G)). Moreover, the map τ : M(G) → I (M (G))
defined by τ (Ha) = τHa is an embedding of M (G) into I (M (G)).

Proof. (M (G) , ∗) is an inverse monoid and by using the inverse of
Ha ∈M (G), i.e. (Ha)−1 = (a−1Ha) a−1 the proof is complete. �

Remark 2.3. (i) For all H ∈ Sub (G), H ∗ M (G) ∗ H is the inverse
subsemigroup of (M (G) , ∗). (ii) For all Ha ∈M (G),

Ha ∗
(
a−1Ha

)
a−1 ∗M (G) ∗Ha ∗

(
a−1Ha

)
a−1,

and (
a−1Ha

)
a−1 ∗Ha ∗M (G) ∗

(
a−1Ha

)
a−1 ∗Ha,

are the inverse subsemigroups of (M (G) , ∗).

Proof. For (i) we use the fact that EM(G) = Sub (G). (ii) Since for all

Ha ∈M (G), we have (Ha)−1 = (a−1Ha) a−1,

Ha ∗
(
a−1Ha

)
a−1 ∗Ha ∗

(
a−1Ha

)
a−1 ∈ EM(G),
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and (
a−1Ha

)
a−1 ∗Ha ∗

(
a−1Ha

)
a−1 ∗Ha ∈ EM(G),

so the proof is complete. �

Theorem 2.4. Let G be a group such that for all H,K ∈ Sub (G) , HK =
KH. Define an operation ”∆” on M (G) by Ha∆Kb = (HK) ab. Then
the followings hold:

(i) (M (G) ,∆) is an inverse monoid.
(ii) Sub (G) is the set of idempotents.

Proof. (i) Obviously M(G) is closed with respect to ∆ since for all
H,K ∈ Sub (G), HK ∈ Sub(G). If Ha,Kb, Lc ∈M (G) then

(Ha∆Kb) ∆Lc = ((HK) ab) ∆Lc = ((HK)L) (ab) c = (HKL) abc,

And

Ha∆ (Kb∆Lc) = Ha∆ (KL) bc = (H (KL)) abc = (HKL) abc,

so the ∆ is an associative operation.
The identity element in M (G) is {1G}. Indeed, if Ha ∈M (G) then

we have Ha∆ {1G} = {1G}∆Ha = Ha. Since

Ha∆Ha−1∆Ha = HHaa−1∆Ha = H1G∆Ha = H∆Ha = Ha

and Ha−1∆Ha∆Ha−1 = Ha−1, so Ha−1 is an inverse of Ha in the
monoid (M (G) ,∆). Now, suppose that Ha is idempotent, i.e. Ha =
Ha∆Ha = Ha2. Then in particular, a2 = 1Ga

2 ∈ Ha, i.e, a2 = ha
for some h ∈ H. Hence a = h ∈ H and so Ha = H. In fact the
idempotents of (M (G) ,∆) are precisely the subgroups of G. For any
two subgroups H,K of G H∆K = K∆H = HK. Thus idempotents
commute and so (M (G) ,∆) is an inverse monoid. �

Remark 2.5. For each Ha ∈M (G), let τHa ∈ I (M (G)) defined by
τHa (Kb) = (HK) ab, for all Kb ∈ M (G) ∆Ha−1. Then the mapping
τ : M (G) −→ I (M (G)) defined by τ (Ha) = τHa is an embedding of
M (G) into I (M (G)).

Proof. The proof yields from the fact that (M (G) ,∆) is an inverse
monoid and for Ha ∈M (G), we have (Ha)−1 = Ha−1. �

Remark 2.6. (i) For all H ∈ Sub (G), H∆M (G) ∆H is the inverse
subsemigroup of (M (G) ,∆). (ii) For all Ha ∈M (G),

Ha∆Ha−1∆M (G)Ha∆Ha−1,

and
Ha−1∆Ha∆M (G) ∆Ha−1∆Ha,

are inverse subsemigroups of (M (G) ,∆).
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Proof. The part (i) is a consequence of EM(G) = Sub (G). For (ii), it is

enough to note that for all Ha ∈M (G), we have (Ha)−1 = Ha−1 and
Ha∆Ha−1 ∈ EM(G), Ha

−1∆Ha ∈ EM(G). �

Theorem 2.7. Let (S,+, 0) and (M, ·, 1) be two monoids and consider
the left action of M on S:

M × S −→ S
(m, s) 7−→ ms,

such that it satisfies
• m (s1 + s2) = ms1 +ms2,
• m1 (m2s) = (m1m2) s,
• 1s = s,
• m0 = 0.
for all s, s1, s2 ∈ S and m,m1,m2 ∈M. Then the followings hold

(i) For all m ∈ M ; the map θm : S −→ S, s 7−→ ms is an element
of End (S),

(ii) The map θ : (M, ·, 1) −→ (End (S) , ◦, idS) ,m 7−→ θm is a
morphism of monoids.

(iii) The set S×M with the multiplication (s,m) (s′,m′) = (s+ms′,mm′)
is a monoid.

(iv) If K = {( 1 0
s m ) , s ∈ S,m ∈M}, then (K,×) is a monoid.

(v) The map h : (S ×M, .) −→ (K,×) , (s,m) 7−→ ( 1 0
s m ) is an

isomorphism of monoids.

Proof. For all s, s′ ∈ S, θ (s+ s′) = m (s+ s′) = ms + ms′ = θ (s) +
θ (s′) and θ (0) = m0 = 0 so θm ∈ End (S) and this proved (i). Since for
all s ∈ S, θmm′ (s) = (mm′) s and (θm ◦ θm′) (s) = θm (m′s) = m (m′s)
so θ (mm′) = θ (m) ◦ θ (m) where m,m′ ∈ M which left the part (ii)
proved. For (iii), the closure property follows from the definition of
multiplication as follows. Take elements (s,m) , (s′,m′) and (s′′,m′′) of
S ×M . Then

((s,m) (s′,m′)) (s′′,m′′) = (s+ms′,mm′) (s′′,m′′) ,

= (s+ms′ + (mm′) s′′, (mm′)m′′) .

Also, we have in the same manner that,

(s,m) ((s′,m′) (s′′,m′′)) = (s,m) (s′ +m′s′′,m′m′′) ,

= (s+m (s′ +m′s′′) ,m (m′m′′)) ,

= (s+ms′ + (mm′) s′′,m (m′m′′)) .
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Hence the multiplication is associative. Moreover, for all (s,m) ∈ S ×
M

(s,m) (0, 1) = (0, 1) (s,m) = (s,m) .

This implies that identity element exists so S ×M is a monoid. For
elements ( 1 0

s m ) , ( 1 0
s′ m′ ) and ( 1 0

s′′ m′′ ) of K we have[(
1 0
s m

)
×

(
1 0
s′ m′

)]
×

(
1 0
s′′ m′′

)
=

(
1 0

s+ms′ mm′

)
×
(

1 0
s′′ m′′

)
=

(
1 0

s+ms′ +mm′s′′ (mm′)m′′

)
.

And(
1 0
s m

)
×
[(

1 0
s′ m′

)
×

(
1 0
s′′ m′′

)]
=

(
1 0

s+ms′ +mm′s′′ m(m′m′′)

)
.

Obviously, the identity element of (K,×) is ( 1 0
0 1 ). So (K,×) is a

monoid. For (v), it is easy to see that h is a bijective. Also for all
(s,m) , (s′,m′) ∈ S ×M :

h [(s,m)(s′,m′)] = h (s+ms′,mm′) =

(
1 0

s+ms′ mm′

)
,

=

(
1 0
s m

)
×
(

1 0
s′ m′

)
,

= h(s,m)× h(s′,m′).

�

Theorem 2.8. Let (S,+, 0) and (M, ·, 1) be two groups. Let the left
action of M on S M × S −→ S, (m, s) 7−→ ms which satisfies the
following conditions for all s, s1, s2 ∈ S and m,m1,m2 ∈M
• m (s1 + s2) = ms1 +ms2,
• m1 (m2s) = (m1m2) s,
• 1s = s,
• m0 = 0,
• m−1 (s) = m (−s) = −ms.
Then we have

(i) For all m ∈M, θm : S −→ S, s 7−→ ms, θm ∈ End (S) ,
(ii) The mapping θ : (M, ·, 1) −→ (End (S) , ◦, idS) ,m 7−→ θm is a

morphism of groups,
(iii) The set S×M with multiplication (s,m) (s′,m′) = (s+ms′,mm′)

is a group,
(iv) If K = {( 1 0

s m ) , s ∈ S,m ∈M}, then (K,×) is a group,
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(v) The mapping h : (S ×M, .) −→ (K,×) , (s,m) 7−→ ( 1 0
s m ) is an

isomorphism of groups.

Proof. It is suffices to show that, for each (s,m) ∈ S ×M , there exists
(s′,m′) ∈ S ×M such that (s,m) (s′,m′) = (s′,m′) (s,m) = (0, 1). We
have

(s,m)
(
−m−1s,m−1

)
=

(
s+m

(
−m−1s

)
,mm−1

)
= (0, 1) ,

and (
−m−1s,m−1

)
(s,m) =

(
−m−1s+m−1s,m−1m

)
= (0, 1) .

We also have(
1 0
s m

)(
1 0

−m−1s m−1

)(
1 0

−m−1s m−1

)(
1 0
s m

)
=

(
1 0
0 1

)
.

�

3. Conclusion

In this paper, we present some notes on the inverse monoid M (G)
associated to a group G. Also we construct the semidirect product of
groups associated to the group action on another group.
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