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E-LIFTING MODULES RELATIVE TO FULLY
INVARIANT SUBMODULES

F. ALIZADEH, M. HOSSEINPOUR(∗), AND Z. KAMALI

Abstract. In this paper, we introduce the notion FI-e-lifting
modules which is proper generalization of lifting (e-lifting) mod-
ules. Then we give some characterizations and properties of e-
lifting and FI-e-lifting modules. We provide a decomposition of
any e-lifting modules. It is shown that every finite direct sum of
FI-e-lifting modules is FI-e-lifting.

1. Introduction

Throughout this paper R is an associative ring with unity and all
modules are unital right R-modules. By N ≤M , we mean that N is a
submodule of M . A submodule N of a module M is called essential in
M , if for every nonzero submodule L of M , we have N∩L 6= 0 (denoted
by N ≤e M). As a dual concept a submodule N of a module M is
called small in M , if for every proper submodule L of M , N + L 6= M
(denoted by N �M). Also M is called a small module, if there exists
a module T such that M � T . Recall that the singular submodule
Z(M) of a module M is the set of m ∈ M with mI = 0 for some
essential right ideal I of R. If Z(M) = M (Z(M) = 0), then M is
called a singular (nonsingular) module. Let K, N be submodules of
M . Following [13], as a generalization of small submodules, N is called
δ-small in M , if M = N + K with M/K singular implies M = K
(denoted by N �δ M). A submodule K of M is called fully invariant
if ϕ(K) ⊆ K for every endomorphism ϕ ofM . AnR-moduleM is called
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lifting if for every submodule A of M there exists a direct summand
N of M with N ⊆ A and A/N � M/N (see [3]). As a generalization
concept of lifting modules, introduced the notion FI-lifting modules
(see [6], [9]). An R-module M is said to be FI-lifting if every fully
invariant submodule A of M contains a direct summand N of M with
A/N � M/N . Following [7], Kosan defined δ-lifting modules, The
module M is called δ-lifting if for every submodule A of M there exists
a direct summand N of M with N ⊆ A and A/N �δ M/N . In [11]
authors defined and consider FI-δ-lifting modules. A module M is FI-
δ-lifting if every fully invariant submodule A of M contains a direct
summand N of M such that A/N �δ M/N .

Following [14], a submodule N of M is called e-small in M (denoted
by N �e M), if N +L = M with L essential in M implies L = M . We
say, a module M is called a e-small module if there exists a module T
such that M �e T . It is clear that if N is a δ-small submodule of M
then N is an e-small submodule of M . Some basic characterizations
of e-small submodules are obtained in [14]. Recently, several authors
used the small and e-small notions to study some characterizations
of rings and modules ([8], [12],...). Using this notion, Quynh-Hong
Tin [8] introduced a generalization of lifting modules. A module M is
said to be e-lifting if for every submodule A of M , there exists a direct
summand N of M with N ⊆ A and A/N �e M/N . Also, we introduce
the notion of FI-e-lifting modules. We call a right R-module M FI-e-
lifting if for every fully invariant submodule A of M , there exists a
direct summand N of M with N ⊆ A and A/N �e M/N .

In Section 2, we study some properties of e-small submodules and
e-lifting modules. We provide decompositions for e-lifting module in
term of its special submodules. We show that if M is e-lifting module.
Then there exist a semisimple submodule M1 and a submodule M2

of M such that M = M1 ⊕M2 and every nonzero submodule of M2

contains a nonzero e-small submodule (see Proposition 2.11).
We define and investigate FI-e-lifting modules in Section 3, which

were motivated by definitions of FI-lifting modules. It is shown that,
every finite direct sum of FI-e-lifting modules is FI-e-lifting module (see
Theorem 3.9).

2. Some properties of e-lifting modules

This section devoted to study about properties of e-small submodule
and e-lifting modules.

The following lemma, which characterizes e-small, is taken from [14].

Lemma 2.1. Let M be a module. Then
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(1) If N �e M and K ≤ N , then K �e M and N/K �e M/K.
(2) Let N �e M and M = X + N . Then M = X ⊕ Y for a

semisimple submodule Y of M .
(3) Let N,K ≤M . Then N +K �e M if and only if N �e M and

K �e M .
(4) If K �e M and f : M → N is a homomorphism, then f(K)�e

N . In particular, if K �e M ≤ N ; then K �e N .
(5) Let K1 ≤ M1 ≤ M , K2 ≤ M2 ≤ M and M = M1 ⊕M2. Then

K1⊕K2 is e-small in M1⊕M2 if and only if K1 �e M1 and K2 �e M2.
(6) Let N,K ≤ M such that N ⊆ K. If K is a direct summand of

M and N �e M , then N �e K.

The next proposition shows an equivalent statement of e-small sub-
modules.

Proposition 2.2. A submodule N of R-module M is e-small if and
only if for each submodule X of M , if N +X = M , then X is a direct
summand of M .

Proof. (⇒) Let N be a e-small submodule of M and suppose that X
a submodule of M such that N + X = M . Let X ′ be a relative com-
plement of X in M . By [4, Page 6], X ⊕X ′ is an essential submodule
in M . Since N + X = M , it follows that K + X + X ′ = M . Since N
is a e-small submodule of M , X + X ′ = M and hence M = X ⊕ X ′.
Thus X is a direct summand of M .

(⇐) Let for each submodule X of M , if N + X = M , then X is
a direct summand of M . Now, let X be an essential submodule of
M . By hypothesis, X is a direct summand in M . But M is the only
essential direct summand in M , so X = M and hence K is an e-small
submodule in M .

�

By definitions every δ-small submodule of a module is e-small in that
module and by above lemma, every e-small submodule of a projective
module is δ-small. The following example shows that the class of e-
small submodules contains properly the class of δ-small submodules.

Example 2.3. (see Example 2.2 [14]) Assume that R = Z, M = Z6,
N = {0, 3} and K = {0, 2, 4}. Then N is e-small in M . But M/K is
singular and N +K = M . So N is neither δ-small nor small in M .

Proposition 2.4. Let M be a nonsingular R-module. A proper sub-
module N of M is e-small if and only if it is δ-small.

Proof. We know, every δ-small submodule of M is a e-small submodule
of M . Now, let N �e M , Suppose that N + K = M with M/K
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is singular. Since M is nonsingular, then by [5, Proposition 1.21],
K ≤e M . But N �e M so K = M . Thus N �δ M �

Example 2.5. Let R be a right semisimple ring and M a nonzero right
R-module. Then M is semisimple and nonsingular. For any nonzero
N ≤M , N is a direct summand of M and hence is not small in M , but
every submodule of M(even M itself) is δ-small in M and so e-small.

For anR-moduleM , δ(M) =
∑
{N ≤M | L�δ M} andRade(M) =∑

{N ≤M | N �e M} ([14]). Clearly Rad(M) ⊆ δ(M) ⊆ Rade(M).

Corollary 2.6. Let M be a semisimple module, then Rade(M) = M .

But the converse above corollary is not true. Let Z-module M = Q.
Since Rad(M) = M , so Rade(M) = M , but M is not semisimple.

Let M be an R-module. Recall that, a pair (P, p) is a projective

δ-cover of M in case P is a projective R-module and P
p→ M → 0 is

epimorphism and Kerp�δ P . Also a ring R is called δ-semiperfect, if
every simple R-module has a projective δ-cover ([13]).

We know, every lifting module is e-lifting, but next example shows
that the converse is not true.

Example 2.7. Let R be a δ-semiperfect ring. Then by [13, Theo-
rem 3.6], for any right ideal I of R, I = eR ⊕ S, where e2 = e ∈ R
and S ≤ δ(R) ⊆ Rade(M). Hence by [8, Lemma 2], R is a e-lifting
right R-module. If R were lifting, R would be perfect and so semiper-
fect. But by [13, Example 4.1], A δ-semiperfect ring is not necessarily
semiperfect. Thus, R is not lifting.

Proposition 2.8. Let M be e-lifting module. Then the module M/Rade(M)
is semisimple.

Proof. By [8, Lemma 7]. �

Corollary 2.9. Let R be a ring such that every simple R-module is
e-small and M an e-lifting module. Then Rade(M) is an essential
submodule of M .

Proof. Let N be any submodule of M such that N ∩ Rade(M) = 0.
So N can be embedded in M/Rade(M). By Proposition 2.8, N is
semisimple, so that, by hypothesis, N ⊆ Rade(M). Hence N = 0.
Thus Rade(M) is an essential submodule of M . �

Lemma 2.10. Let M be a e-lifting module and N be any submodule of
M . Then N contains a nonzero e-small submodule or N is a semisimple
direct summand of M .
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Proof. Suppose that N does not contain a e-small. Let P be any sub-
module of N . By [8, Lemma 2], P = K ⊕ L for some direct summand
K of M and e-small submodule L of M . But L = 0, and hence, P = K.
By [1, Theorem 9.6], N is a semisimple direct summand of M . �

The following provide a decomposition of e-lifting modules in term
of its special submodules.

Proposition 2.11. Let M be a e-lifting module. Then there exist a
semisimple submodule M1 and a submodule M2 of M such that M =
M1 ⊕M2 and every nonzero submodule of M2 contains a nonzero e-
small submodule.

Proof. Let A = {N ≤ M such that N does not contain a non-zero e-
small submodule}. By Zorn’s Lemma, A contains a maximal element
M1. By Lemma 2.10, M1 is a semisimple direct summand of M . So
there exists a submodule M2 such that M = M1 ⊕M2. Let N be a
non-zero submodule of M2. Then M1 ⊕N contains a non-zero e-small
submodule K, by the choice of M1. Note that K ∩ M1 is a e-small
submodule and hence K ∩M1 = 0. Thus K can be embedded in N
and hence N contains a non-zero e-small submodule. �

Recall that an R-module M is called extending, provided for every
submodule A of M there exists a direct summand B of M such that
A ≤e B ([4]).

Proposition 2.12. Let M be an extending module. Then M is e-lifting
if and only if every submodule of M is a direct sum of an extending
module and a e-small module.

Proof. Suppose that M is e-lifting. Let N ≤ M . Then N = N1 ⊕ N2

where N1 is a direct summand of M and N2 is e-small. It follows that
N1 is extending. Conversely, Suppose that every submodule of M is
a direct sum of an extending module and a e-small module. Let L be
any submodule of M . Then L = L1 ⊕ L2 for some extending module
L1 and e-small module L2. Since L1 is extending, there exists a direct
summand K of L such that L1 ≤e K. It follows that K ∩ L2 = 0 and
L = K ⊕ L2. Hence M is e-lifting. �

By analogy with [10, Proposition 2.8], we get the following proposi-
tion.

Proposition 2.13. Let R be a ring. An injective right R-module M
is e-lifting if and only if every submodule of M is a direct sum of an
injective module and a e-small module.
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Proof. Suppose that M be a e-lifting injective module. By [8, Lemma
2], every submodule of M is a direct sum of an injective module and
a e-small module. Conversely, suppose that every submodule of M is
a direct sum of an injective module and a e-small module. Since an
injective submodule is a direct summand, M is e-lifting. �

Proposition 2.14. The following are equivalent for a ring R.
(1) Every extending right R-module is e-lifting;
(2) Every quasi-injective right R-module is e-lifting;
(3) Every injective right R-module is e-lifting;
(4) Every right R-module is a direct sum of an extending module and

a e-small module;
(5) Every right R-module is a direct sum of an injective module and

a e-small module.

Proof. (3) ⇐⇒ (5) By Proposition 2.13. (1) =⇒ (2) =⇒ (3) Clear.
(1)⇐⇒ (4) By Proposition 2.12. �

Let R be a ring. Recall that R is a right Harada ring (H-ring for
short), if every injective right R-module is lifting. R is a right H-ring if
and only if every right R-module can be expressed as a direct sum of a
small R-module and an injective module. Also R is a Quasi-Frobenius
ring (QF-ring for short), if every injective module is projective if and
only if every projective module is injective. Therefore, if R is H-ring
or QF -ring then by Proposition 2.14, for every right R-module, can be
written a decomposition (See [3]).

Let M be an R-module. We say that M satisfies the condition (∗),
if for every direct summands M1 and M2 of M with M1 ∩M2 �e M ,
then M1 ∩M2 = 0

Example 2.15. (1) Z-module Z6 satisfies (∗) condition.
(2) Consider Z2 ⊕ Z4 as a Z-module, Z2 ⊕ Z4 does not satisfies

(∗) condition. Because A = {(0, 0), (1, 1), (0, 2), (1, 3)} and B =
{(0, 0), (0, 1), (0, 2), (0, 3)} are direct summands of Z2⊕Z4, but A∩B 6=
0.

Lemma 2.16. Let M be an R-module satisfies (∗) condition, then
every direct summand of M satisfies (∗) condition.

Proof. Let A be a direct summand of M and let A1 and A2 be direct
summands of A with A1∩A2 �e A. So A1 and A2 are direct summands
of M with A1 ∩ A2 �e M . Since M satisfies (∗) condition, then
A1 ∩ A2 = 0. Thus A satisfies (∗) condition. �
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Proposition 2.17. Let M be a e-lifting module satisfies (∗) condition.
If M1 and M2 are direct summands of M , then M1 ∩M2 is a direct
summand of M .

Proof. Let M1 ∩M2 6= 0. Since M is a e-lifting module, then there is a
submodule A of M1∩M2 such that M = A⊕B and (M1∩M2)∩B �e B
and so (M1 ∩M2) ∩ B �e M . We show M1 ∩ B are B ∩M2 direct
summands of B. It is easy that, M1 = M ∩M1 = M1 ∩ (A ⊕ B) =
A⊕ (M1 ∩B). Since M1 is a direct summand of M , then M1 ∩B is a
direct summand of B. Similarly M2∩B is a direct summand of B. But
by Lemma 2.16, B satisfies (∗) condition. Since (M1∩B)∩ (M2∩B) =
(M1 ∩M2) ∩ B �e B, then (M1 ∩ B) ∩ (M2 ∩ B) = 0. Thus we get
(M1 ∩M2) ∩ B = 0. Next we have, (M1 ∩M2) = (M1 ∩M2) ∩M =
(M1 ∩M2) ∩ (A ⊕ B) = A ⊕ ((M1 ∩M2) ∩ B) = A. So M1 ∩M2 is a
direct summand of M . �

The following theorem gives a decomposition of any e-lifting module.

Theorem 2.18. Let M be a e-lifting module. Then M = M1⊕M2⊕M3,
where

(1) M1 is semisimple.
(2) M2 is e-lifting with Rad(M2) e-small and essential in M2.
(3) M2 is e-lifting with Rad(M3) = M3.

Proof. Let M be a e-lifting module, then by [8, Proposition 3], we
have a decomposition M = M1 ⊕ A where M1 is semisimple and
Rade(A) ≤e A. Also by [8, Lmma 3], A is e-lifting. HenceA = M2⊕M3,
M3 ⊆ Rade(A) and Rade(A) ∩ M2 �e M2. But M2 ∩ Rade(A) =
M2∩(Rade(M2)⊕Rade(M3)) = Rade(M2). So Rade(M2)�e M2. Now,
since Rade(A) = Rade(M2)⊕Rade(M3) ≤e M2⊕M3, then by [1, Propo-
sition 5.20], Rade(M2) ≤e M2. Also M = M1 ⊕ A = M1 ⊕M2 ⊕M3,
then M3 is a direct summand of M and e-lifting. But M3 ⊆ Rade(A),
therefore M3 = M3 ∩ Rade(A) = M3 ∩ (Rade(M2) ⊕ Rade(M3)) =
M3 ∩Rade(M3) = Rade(M3). �

3. FI-e-lifting modules

Recall that a submodule K of M is called fully invariant if ϕ(K) ⊆
K for all ϕ ∈ EndR(M). In this section, we shall introduce a new
generalization of FI-lifting modules. We call a module M is FI-e-lifting,
if for fully invariant submodule N of M , there exsits a direct summand
D of M , such that N/D �e M/D.

The following Lemma contains some basic properties of fully invari-
ant submodule which we use this section.
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Lemma 3.1. Let M be a module. Then:
(1) Any sum or intersection of fully invariant submodules of M is

again a fully invariant submodule of M (in fact the fully invariant sub-
modules form a complete modular sublattice of the lattice of submodules
of M).

(2) If X ⊆ Y ⊆M such that Y is a fully invariant submodule of M
and X is a fully invariant submodule of Y , then X is a fully invariant
submodule of M .

(3) If M = ⊕i∈IXi and S is a fully invariant submodule of M , then
S = ⊕i∈Iπi(S) = ⊕i∈I(Xi ∩ S), where πi is the i-th projection homo-
morphism of M .

(4) If X ≤ Y ≤ M such that X is a fully invariant submodule of
M and Y/X is a fully invariant submodule of M/X, then Y is a fully
invariant submodule of M .

Proof. See [2, Lemma 1.1]. �

The following Proposition introduces an equivalent condition for a
FI-e-lifting module.

Proposition 3.2. Let M be an R-module. Then the following are
equivalent:

(1) M is FI-e-lifting;
(2) Every fully invariant submodule A of M can be written as A =

B ⊕ S, where B is a direct summand of M and S �e M ;

Proof. (1) =⇒ (2) Let A be a fully invariant submodule of M . Since
M is FI-e-lifting, there exists a decomposition M = M1⊕M2 such that
M1 ≤ A and M2 ∩ A e-small in M2. Therefore A = M1 ⊕ (A ∩M2).

(2) =⇒ (1) Assume that every fully invariant submodule has the
stated decomposition. Let A be a fully invariant submodule of M .
By hypothesis, there exists a direct summand N of M and a e-small
submodule S of M such that A = N ⊕ S. Now let M = N ⊕ N ′

for some submodule N ′ of M . Consider the natural epimorphism π :
M −→ M/N . Then π(S) = (S + N)/N = A/N �e M/N . Therefore,
M is FI-e-lifting. �

Clearly, every e-lifting module is FI-e-lifting. It follows that every
lifting module is FI-e-lifting. Also, every FI-lifting module is FI-δ-
lifting and FI-e-lifting. So, by definitions, we have the following dia-
gram:

lifting ⇒ δ − lifting ⇒ e− lifting
⇓ ⇓ ⇓

FI − lifting ⇒ FI − δ − lifting ⇒ FI − e− lifting
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Example 3.3. The module Z as a Z-module is not FI-δ-lifting, and
since Z is nonsingular, then by Proposition 2.4, Z as a Z-module is not
FI-e-lifting.

The next example shows that every FI-e-lifting module is not e-
lifting.

Example 3.4. The only fully invariant submodules of Z-module Q are
0 and Q. Therefore, Q is FI-e-lifting. But it is not δ-lifting and since
Z-module Q is nonsingular, so Z-module Q is not e-lifting.

The next result characterizes indecomposable FI-e-lifting modules.

Proposition 3.5. Let M be an indecomposable module. Then the fol-
lowing conditions are equivalent:

(1) M is FI-e-lifting;
(2) Every proper fully invariant submodule of M is e-small in M ;

Proof. (i)⇒ (ii) Let A be a proper fully invariant submodule of M . By
assumption, there exists a direct summand K of M such that A/K is
e-small in M/K. Since M is indecomposable, we have K = 0. Hence
A is e-small in M .

(ii) ⇒ (i) It is clear. �

Corollary 3.6. Let M be an indecomposable R-module. If M is FI-e-
lifting, then for every fully invariant submodule A of M , Rade(A) �e

M .

Proof. Let A be a fully invariant submodule of M . Since Rade(A) is
a fully invariant submodule of A, then Rade(A) is a fully invariant
submodule of M , by Proposition 3.5, Rade(A)�e M . �

Proposition 3.7. Let M be a FI-e-lifting module and let N be a fully
invariant direct summand of M . Then N is a FI-e-lifting module.

Proof. Let N ′ be a submodule of M such that M = N ⊕N ′. Let A be
a fully invariant submodule of N . Then A is a full invariant submodule
of M since N is fully invariant in M . As M is FI-e-lifting, there exists a
direct summand B of M such that A/B �e M/B. It is easily seen that
M/B = N/B ⊕ ((N ′ + B)/B). Therefore A/B �e N/B by Lemma
2.1. Note that B is a direct summand of N . It follows that N is a
FI-e-lifting module. �

Proposition 3.8. Let M be an R-module with Rade(M) = 0. Then
M is FI-e-lifting if and only if every fully invariant submodule of M is
a direct summand of M .
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Proof. Suppose that M is FI-e-lifting and let A be a fully invariant
submodule of M . Then by Proposition, A = X ⊕ S, where X is a
direct summand of M and S �e M . But Rade(M) = 0, therefore
S = 0. Thus A = X and hence A is a direct summand of M . The
converse is true. �

We show every finite direct sum of FI-e-lifting modules is FI-e-lifting
module.

Theorem 3.9. Let M =
⊕n

i=1Mi be a finite direct sum of FI-e-lifting
modules. Then M is FI-e-lifting.

Proof. LetN be a fully invariant submodule ofM . ThenN =
⊕n

i=1(N∩
Mi) and N ∩Mi is a fully invariant submodule of Mi. Since each Mi is
FI-e-lifting, by Proposition 3.2, N ∩Mi = Li ⊕ Si where Li is a direct
summand of Mi and Si �e Mi. Set L =

⊕n
i=1 Li and S =

⊕n
i=1 Si.

Then N = L⊕S where L is a direct summand of M and S �e M . �

Corollary 3.10. If M is a finite direct sum of lifting modules, then M
is FI-e-lifting.

Example 3.11. (1) Let K be the quotient field of a discrete valuation
domain R which is not complete. Set M = K ⊕K. We know that K
is a hollow module. Therefore M is FI-e-lifting by Corollary 3.10. On
the other hand, M is not lifting by [3, Example 23.7].

(2) Let p be any prime integer and consider the Z-module M =
(Z/pZ) ⊕ (Z/p3Z). Since any hollow module is lifting and so FI-e-
lifting, Corollary 3.10 implies M is FI-e-lifting. But M is not e-lifting
by [8, Example 1]. And so M is not a lifting module ([3, Example
23.5]).

Proposition 3.12. Let R be a ring and M be FI-e-lifting. Then ev-
ery fully invariant submodule of the module M/Rade(M) is a direct
summand.

Proof. Let N/Rade(M) be a fully invariant submodule of M/Rade(M).
Then N is fully invariant submodule of M by Lemma 3.1. By hypothe-
sis, there exists a decomposition M = M1⊕M2 such that M1 ≤ N and
N∩M2 �e M2. Since M2∩N is also e-small in M , N∩M2 ≤ Rade(M).
ThusM/Rade(M) = (N/Rade(M))⊕((M2+Rade(M))/Rade(M)). �

Let M be an R-module. We say, a pair (P, p) is a projective e-cover of

M in case P is a projective R-module and P
p→M → 0 is epimorphism

and Kerp�e P .
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Theorem 3.13. Let P be a projective module. Then P is FI-e-lifting
if and only if P/A has a projective e-cover for every fully invariant
submodule A of P .

Proof. Suppose P is a projective FI-e-lifting module and A is a fully
invariant submodule of P . Then A = X ⊕ S where X is a direct
summand of P and S �e P . Suppose P = X ⊕ Y . As S �e P ,
(X+S)/X �e P/X. Hence the natural map f : P/X → P/(X+S) =
P/A is a projective e-cover. Conversely, suppose P/A has a projective
e-cover for every fully invariant submodule A of P . Let f : Q→ P/A be
a projective e-cover of P/A. Then there exists a map h : P → Q such
that fh = ϕ where ϕ : P → P/A is the natural map. As Kerf �e Q
and ϕ is an epimorphism, h is an epimorphism and hence h splits.
Suppose P = Kerh⊕B. Then A = Kerh⊕ (A∩B) and A∩B �e P .
Thus P is FI-e-lifting. �

Corollary 3.14. Let R be a ring. Then RR is FI-e-lifting if and only
if R/I has a projective e-cover for every two sided ideal I of R.

Acknowledgments

The authors would like to thank the referee for careful reading.

References

1. F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-
Verlag, New York, (1992).

2. G.F. Birkenmeier, B.J. Müller and S.T. Rizvi, Modules in which every fully
invariant submodule is essential in a direct summand, Comm. Algebra, (3) 30
(2002), 1395-1415.

3. J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting Modules. Supplements
and Projectivity in Module Theory, Frontiers in Math. Boston: Birkhauser, 2006.

4. N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, Extending modules,
Pitman Research Notes in Math. Ser. 313, 1994.

5. K. R. Goodearl, Ring Theory, Nonsingular ring and modules, New York and
Basel, 1976.

6. M. T. Kosan, The lifting condition and fully invariant submodules, East-West J.
Math. (1) 7 (2005), , 99-106.

7. M. T. Kosan, δ-lifting and δ-supplemented modules, Algebra Colloq. (1) 14
(2007), 53-60 .

8. T. C. Quynh and P. H. Tin, Some properties of e-supplemented and e-lifting
modules, Vietnam J. Math. 41 (2013), 303-312.

9. Y. Talebi and T. Amoozegar, Strongly FI-lifting modules, Int. Electron. J. Alge-
bra, 3 (2008), 75-82.



24 ALIZADEH, HOSSEINPOUR, AND KAMALI

10. Y. Talebi and M.J. Nematollahi, Modules with C∗-condition, Taiwanese J.
Math. (5) 13 (2009), 1451–1456.

11. Y. Talebi, M. Hosseinpour, and S. Khajvand Sany, Strongly FI-δ-lifting mod-
ules, Palest. J. Math. (1) 3, (2014) 11-16 .

12. L. V. Thuyet and Ph. Hong Tin, Some Characterizations of Modules via Es-
sentially Small Submodules, Kyungpook Math. J. 56 (2016) 1069-1083.

13. Y. Zhou, Generalizations of perfect, semiperfect, and semiregular rings, Algebra
Colloq. (3) 7 (2000), 305-318.

14. D. X. Zhou and X. R. Zhang, Small-essential submodules and Morita duality,
Southeast Asian Bull. Math. 35, (2011), 1051-1062.

Fatemeh Alizadeh
Department of Mathematics, Faculty of Basic Sciences, Babol University of Tech-
nology, Babol, Iran.
Email: fatemeh.alizadeh.ghadikolaei@gmail.com

Mehrab Hosseinpour
Department of Mathematics, Faculty of Mathematical Sciences, University of Mazan-
daran, Babolsar, Iran.
Email: mehrab.hosseinpour@gmail.com

Zahra Kamali
Department of Mathematics, Faculty of Basic Sciences, Babol University of Tech-
nology, Babol, Iran.
Email: Kamalih1357@gmail.com


	1. Introduction
	2. Some properties of e-lifting modules
	3. FI-e-lifting modules
	References

