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SOME RESULTS ON A SUBGRAPH OF THE
INTERSECTION GRAPH OF IDEALS OF A

COMMUTATIVE RING

S. VISWESWARAN ∗ AND P. VADHEL

Abstract. The rings considered in this article are commutative
with identity which admit at least one nonzero proper ideal. Let R
be a ring. Let us denote the collection of all proper ideals of R by
I(R) and I(R)\{(0)} by I(R)∗. With R, we associate an undirected
graph denoted by g(R), whose vertex set is I(R)∗ and distinct
vertices I1, I2 are adjacent in g(R) if and only if I1 ∩ I2 6= I1I2.
The aim of this article is to study the interplay between the graph-
theoretic properties of g(R) and the ring-theoretic properties of R.

1. Introduction

The rings considered in this article are commutative with identity
which admit at least one nonzero proper ideal. Let R be a ring. An
ideal I of R is said to be nontrivial if I /∈ {(0), R}. As in [4], we de-
note the collection of all proper ideals of R by I(R) and the collection
I(R)\{(0)}by I(R)∗. LetR be a ring with identity which is not necessar-
ily commutative and which admits at least one nonzero left ideal I with
I 6= R. We denote the collection of all proper left ideals of R by LI(R)
and LI(R)\{(0)} by LI(R)∗. Recall from [5] that the intersection graph
of ideals of R, denoted by G(R), is an undirected graph whose vertex
set is LI(R)∗ and distinct vertices I1, I2 are adjacent in G(R) if and only
if I1 ∩ I2 6= (0). Let R be a commutative ring with identity. Note that
LI(R)∗ = I(R)∗. In this article, we try to study some graph-theoretic
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properties of the graph g(R), whose vertex set is I(R)∗ and distinct
vertices I1, I2 are adjacent in g(R) if and only if I1∩I2 6= I1I2. Observe
that for any ideals I1, I2 of a ring R, I1I2 ⊆ I1 ∩ I2. Thus if the ideals
I1, I2 of a ring R are such that I1 ∩ I2 = (0), then (0) = I1 ∩ I2 = I1I2.
Therefore, if distinct nontrivial ideals I1, I2 are adjacent in g(R), then
I1 ∩ I2 6= (0) and so, I1 and I2 are adjacent in G(R). Hence, g(R)
is a subgraph of G(R). The intersection graph of ideals of a ring was
studied by several researchers (see, for example [1, 8, 10]). Let R be
a ring. Motivated by the above mentioned articles on G(R), in this
article, we focus our study on investigating the interplay between the
graph-theoretic properties of g(R) and the ring-theoretic properties of
R.

We first recall some relevant definitions and notations from commu-
tative ring theory that are used in this article. The rings considered in
this article are commutative with identity. Let R be a ring. We denote
the nilradical of R by nil(R) and the Jacobson radical of R by J(R).
A ring R is said to be reduced if nil(R) = (0). We denote the set of all
prime ideals of R by Spec(R) and denote the set of all maximal ideals
of R by Max(R). A ring which admits a unique maximal ideal is re-
ferred to as a quasilocal ring. A ring which admits only a finite number
of maximal ideals is referred to as a semiquasilocal ring. A Noetherian
quasilocal (respectively, a semiquasilocal) ring is referred to as a local
(respectively, semilocal) ring. A principal ideal ring R is said to be a
special principal ideal ring (SPIR) if R has a unique prime ideal. If m is
the only prime ideal of a SPIR R, then we denote it by mentioning that
(R,m) is a SPIR. If m is the only prime ideal of a SPIR R, then m is
principal and it follows from [2, Proposition 1.8] that m = nil(R) and
so, m is nilpotent. It is useful to mention here that a quasilocal ring
R with unique maximal ideal m is a SPIR if and only if m is principal
and nilpotent. Let (R,m) be a quasilocal ring which is not a field. Let
m ∈ m\{0} be such that m = Rm. Let n ≥ 2 be the least positive in-
teger such that mn = (0). Then it follows from the proof of (iii)⇒ (i)
of [2, Proposition 8.8] that {mi = Rmi|i ∈ {1, . . . , n− 1}} is the set of
all nonzero proper ideals of R. Therefore, (R,m) is a SPIR.

Let R be an integral domain and let K be its quotient field. Recall
from [2, page 65] that R is a valuation ring of K if for each α ∈ K\{0},
either α ∈ R or α−1 ∈ R. If R is a valuation ring of K, then it is
well-known that the set of ideals of R is linearly ordered by inclusion.
Hence, a valuation domain is necessarily quasilocal. Let K be a field.
Recall from [2, page 94] that a discrete valuation on K is a mapping
v from K∗ = K\{0} onto Z such that (1) v(αβ) = v(α) + v(β) and
(2) v(α + β) ≥ min(v(α), v(β)). It is useful to recall from [2, page
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94] that an integral domain R is said to be a discrete valuation ring
if there exists a discrete valuation v of its quotient field K such that
R = {0} ∪ {α ∈ K∗|v(α) ≥ 0}.

Let R be a ring. Recall from [6, Exercise 7, page 184] that R is a
chained ring if the set of ideals of R is linearly ordered by inclusion. If
R is a chained ring, then it is clear that R is quasilocal.

Let R be a ring. Recall from [6, Exercise 16, page 111] that R is
said to be von Neumann regular if for each a ∈ R, there exists b ∈ R
such that a = a2b. The Krull dimension of a ring R is simply denoted
by dimR. We denote the set of all units of a ring R by U(R). If A
and B are sets and if A is properly contained in B, then we denote it
symbolically by A ⊂ B. The cardinality of a set A is denoted by |A|.

We next recall some definitions and notations from graph theory
that we use in this article. The graphs considered in this article are
undirected and simple. Let G = (V,E) be a graph. Let a, b ∈ V , a 6= b.
Recall that the distance between a and b, denoted by d(a, b), is defined
as the length of a shortest path in G between a and b if there exists such
a path in G; otherwise, we define d(a, b) = ∞. We define d(a, a) = 0.
Recall from [3] that the diameter of G, denoted by diam(G), is defined
as diam(G) = sup{d(a, b)|a, b ∈ V }. A graph G = (V,E) is said to
be connected, if for any distinct a, b ∈ V , there exists a path in G
between a and b [3]. Let G = (V,E) be a connected graph. Let a ∈ V .
Recall from [3] that the eccentricity of a denoted by e(a), is defined
as e(a) = sup{d(a, b)|b ∈ V }. The radius of G, denoted by r(G), is
defined as r(G) = min{e(a)|a ∈ V }. A simple graph G = (V,E) is
said to be complete if every pair of distinct vertices of G are adjacent
in G [3, Definition 1.1.11]. Let n ∈ N. A complete graph on n vertices
is denoted by Kn. A graph G = (V,E) is said to be bipartite if V can
be partitioned into nonempty subsets V1 and V2 such that each edge
of G has one end in V1 and the other end in V2. A bipartite graph
with vertex partition V1 and V2 is said to be complete if each element
of V1 is adjacent to every element of V2. A complete bipartite graph
G = (V,E) with V = V1 ∪ V2 is said to be star if |Vi| = 1 for at least
one i ∈ {1, 2} [3, Definition 1.1.12].

Let G = (V,E) be a graph such that G contains a cycle. Recall from
[3, page 159] that the girth of G, denoted by girth(G), is equal to the
length of a shortest cycle in G. If a graph G does not contain any cycle,
then we define girth(G) =∞. Let G = (V,E) be a graph. Recall from
[3, Definition 1.2.2] that a clique of G is a complete subgraph of G. The
clique number of G, denoted by ω(G), is defined as the largest integer
n ≥ 1 such that G contains a clique on n vertices [3, page 185]. We
set ω(G) =∞ if G contains a clique on n vertices for all n ≥ 1. Recall



38 VISWESWARAN AND VADHEL

from [3, page 129] that a vertex coloring of G is a map f : V → S,
where S is a set of distinct colors. A vertex coloring f : V → S is
said to be proper if adjacent vertices of G receive different colors of S;
that is, if a and b are adjacent vertices of G, then f(a) 6= f(b). The
chromatic number of G, denoted by χ(G), is the minimum number of
colors needed for a proper vertex coloring of G [3, Definition 7.1.2]. It
is well-known that for any graph G, ω(G) ≤ χ(G).

For a graph G, we denote the vertex set of G by V (G) and the edge
set of G by E(G). A subgraph H of G is said to be a spanning subgraph
of G if V (H) = V (G). Observe that for any ring R with |I(R)∗| ≥ 1,
g(R) is a spanning subgraph of G(R).

Let (R,m) be a quasilocal ring which is not a field. In Section 2 of
this article, some basic properties of g(R) are proved. It is proved in
Proposition 2.1 that g(R) is connected and diam(g(R)) ≤ 2. Let (V,m)
be a valuation domain which is not a field. It is shown in Proposition
2.4 that g(V ) = G(V ) if and only if g(V ) is complete if and only if V is
a discrete valuation ring. Let (R,m) be a chained ring which is not an
integral domain. It is proved in Proposition 2.6 that g(R) = G(R) if
and only if g(R) is complete if and only if (R,m) is a SPIR. Let (R,m)
be a quasilocal ring which is not a field. If g(R) does not contain any
infinite clique, then it is shown in Proposition 2.13 that R is Artinian.
From this result, it is deduced that girth(g(R)) = 3 if R is not Artinian.
Let (R,m) be a local Artinian ring which is not a field. It is proved
in Proposition 2.15 that girth(g(R)) ∈ {3,∞}. Let (R,m) be a SPIR
which is not a field. Let n ≥ 2 be least with the property that mn = (0).
It is verified in Corollary 2.17 that girth(g(R)) =∞ if and only if n ∈
{2, 3}. Let (R,m) be a local Artinian ring such that m is not principal.
It is shown in Theorem 2.18 that girth(g(R)) = ∞ if and only if
g(R) = G(R) and g(R) is a star graph. In Theorem 2.20, quasilocal
rings (R,m) are characterized such that G(R) is bipartite and it is
proved that in the case when G(R) is a bipartite graph, g(R) = G(R) is
a star graph. For a local Artinian ring (R,m) with dimR

m
( m
m2 ) = n ≥ 3,

it is shown in Theorem 2.21 that ω(g(R)) < ∞ if and only if R is
finite. Several examples are given to illustrate the results proved in
this section.

Let R be a ring such that |Max(R)| ≥ 2. In Section 3 of this article,
some basic properties of g(R) are proved. If dimR = 0, then it is
proved in Proposition 3.4 that g(R) is not connected. If R is an integral
domain, then it is shown in Proposition 3.6 that g(R) is connected and
diam(g(R)) = 2. If J(R) = (0), then it is verified in Corollary 3.7 that
r(g(R)) = 2. If R is a Noetherian domain with dimR = 1, then it is
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proved in Theorem 3.9 that r(g(R)) = 1 if and only if R is semilocal.
For a ring R with |Max(R)| ≥ 2, some results on girth(g(R)) are
also proved in this section. It is observed that if dimR > 0, then
girth(g(R)) = 3 (see the remark in the paragraph just preceding the
statement of Theorem 3.10). If dimR = 0 and R is reduced (that
is, equivalently, if R is von Neumann regular), then it is shown in
Proposition 3.5 that g(R) has no edges and so, girth(g(R)) =∞. Let
R be such that dimR = 0 and R is not reduced. If Max(R) is infinite,
then it is proved in Theorem 3.10 that ω(g(R)) =∞ and in such a case,
it is noted in Corollary 3.11 that girth(g(R)) = 3. If R is semiquasilocal
and dimR = 0, then it is shown in Proposition 3.13 that if g(R) does
not contain any infinite clique, then R is necessarily Artinian. If R is
Artinian which is not reduced and if |Max(R)| ≥ 3, then it is proved
in Corollary 3.15 that girth(g(R)) = 3. Let R be an Artinian ring such
that |Max(R)| = 2 and R is not reduced. It is shown in Theorem 3.16
that girth(g(R)) ∈ {3,∞} and moreover, in Theorem 3.16, Artinian
rings R with |Max(R)| = 2 are characterized such that g(R) does not
contain any cycle. Some examples are provided to illustrate the results
proved in this section.

2. Some basic results in the case, where R is quasilocal

Let (R,m) be a quasilocal ring with m 6= (0). The aim of this section
is to investigate some graph-theoretic properties of g(R).

Proposition 2.1. Let (R,m) be a quasilocal ring which is not a field.
Then g(R) is connected and diam(g(R)) ≤ 2.

Proof. Let I, J ∈ V (g(R)) be such that I 6= J . We claim that there
exists a path of length at most two between I and J in g(R). We
can assume that I and J are not adjacent in g(R). We consider the
following cases.
Case(1): I ∩ J 6= (0).

Note that for any nonzero proper ideal A of R and a ∈ A\{0},
Ra 6= Aa. For if Ra = Aa, then a = ba for some b ∈ A. This implies
that a(1 − b) = 0. As 1 − b ∈ U(R), we obtain that a = 0. This
is a contradiction and so, Ra 6= Aa. Thus Ra = Ra ∩ A 6= Aa and
so, A and Ra are adjacent in g(R) if A 6= Ra. Let x ∈ I ∩ J, x 6= 0.
Since I 6= J , it follows that either I 6= Rx or J 6= Rx. Without loss
of generality, we can assume that I 6= Rx. As x ∈ I\{0}, we get that
I and Rx are adjacent in g(R). Since we are assuming that I and J
are not adjacent in g(R), it follows that J 6= Rx. As x ∈ J\{0}, we
obtain that Rx and J are adjacent in g(R). Therefore, we obtain that
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I −Rx− J is a path of length two between I and J in g(R).
Case(2): I ∩ J = (0).

From I ∩ J = (0), it follows that IJ = (0). Let a ∈ I\{0} and
b ∈ J\{0}. Let us denote the ideal Ra + Rb by A. It is clear that
A ∈ V (g(R)). As a /∈ J and b /∈ I, it follows that A /∈ {I, J}. Note
that a ∈ I ∩A and it follows from Ib = (0) that IA = Ia. As a /∈ Ia, it
follows that I∩A 6= IA. Hence, I and A are adjacent in g(R). Similarly,
note that b ∈ A ∩ J and it follows from Ja = (0) that AJ = bJ . From
b /∈ bJ , it follows that A ∩ J 6= AJ . Hence, A and J are adjacent in
g(R). Therefore, I −A− J is a path of length two between I and J in
g(R).

This proves that g(R) is connected and diam(g(R)) ≤ 2. �

We next try to determine quasilocal rings (R,m) with m 6= (0) such
that g(R) is complete. In Lemma 2.2, we provide some necessary con-
ditions in order that g(R) is complete.

Lemma 2.2. Let (R,m) be a quasilocal ring which is not a field. If
g(R) is complete, then the following hold.

(i) Either dimR = 0 or R is an integral domain with dimR = 1.
(ii) I 6= I2 for any I ∈ V (g(R)).

Proof. We are assuming that g(R) is complete.
(i) Suppose that dimR > 0. Let p ∈ Spec(R) be such that p ⊂ m. We
claim that p = (0). Suppose that p 6= (0). Then p ∈ V (g(R)). Let
m ∈ m\p. It is clear that Rm ∈ V (g(R)) and p 6= Rm. If x ∈ p ∩Rm,
then x = rm ∈ p for some r ∈ R. As m /∈ p, we get that r ∈ p. Hence,
x ∈ pm. This shows that p ∩ Rm ⊆ pm and so, p ∩ Rm = pm. This
implies that p and Rm are not adjacent in g(R). This is a contradiction.
Therefore, p = (0). Thus if g(R) is complete, then either dimR = 0 or
R is an integral domain and dimR = 1.
(ii) Let I ∈ V (g(R)). If I2 = (0), then it is clear that I 6= I2. Hence,
we can assume that I2 6= (0). Therefore, there exists a ∈ I such that
Ia 6= (0). It is already noted in the proof of Proposition 2.1 that a /∈ Ia
and so, I 6= Ia. Now, Ia ∈ V (g(R)) and I ∩ Ia = Ia. Since I and
Ia are adjacent in g(R), we obtain that Ia = I ∩ Ia 6= I2a and so,
I 6= I2. �

Remark 2.3. Let (R,m) be a quasilocal ring which is not a field. Then
G(R) is connected with diam(G(R)) ≤ 2 and if |I(R)∗| ≥ 2, then
r(G(R)) = 1.

Proof. Let I1, I2 ∈ I(R)∗ be such that I1 6= I2. Suppose that I1 and I2
are not adjacent in G(R). Hence, I1∩I2 = (0). Note that I1−m−I2 is
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a path of length two between I1 and I2 in G(R). This shows that G(R)
is connected and diam(G(R)) ≤ 2. If |I(R)∗| ≥ 2, then d(m, I) = 1
in G(R) for each I ∈ I(R)∗\{m} and so, e(m) = 1 in G(R). Hence,
r(G(R)) = 1. �

Let R be an integral domain which is not a field (R is not necessarily
quasilocal). Then for any I1, I2 ∈ I(R)∗, it is clear that I1 ∩ I2 ∈ I(R)∗

and so, G(R) is complete. We proceed to discuss some results regarding
the status of this result for g(R), whereR is a quasilocal integral domain
which is not a field. Let (V,m) be a valuation domain which is not a
field. In Proposition 2.4, we characterize valuation domains V such
that g(V ) is complete. In Example 2.5, we provide an example of a
valuation domain V such that diam(g(V )) = 2.

Proposition 2.4. Let (V,m) be a valuation domain which is not a
field. The following statements are equivalent:

(i) g(V ) = G(V );
(ii) g(V ) is complete;
(iii) V is a discrete valuation ring.

Proof. (i) ⇒ (ii) As V is an integral domain which is not a field,
G(V ) is complete. Hence, from g(V ) = G(V ), it follows that g(V ) is
complete.
(ii)⇒ (iii) We are assuming that g(V ) is complete. Hence, we obtain
from Lemma 2.2(i) that dimV = 1. We know from Lemma 2.2(ii) that
m 6= m2. Let m ∈ m\m2. We claim that m = V m. It is clear that
V m ⊆ m. Let a ∈ m. We want to prove that V a ⊆ V m. Since the
ideals of V are comparable under the inclusion relation, it follows that
either V a ⊆ V m or V m ⊆ V a. There is nothing to prove if V a ⊆ V m.
Hence, we need to consider the case in which V m ⊆ V a. If V m ⊆ V a,
then m = va for some v ∈ V . As m /∈ m2, it follows that v is a unit
in V and so, a = v−1m ∈ V m. This proves that m ⊆ V m and so,
m = V m. Let I be any nonzero proper ideal of V . We assert that
I = mn = V mn for some n ≥ 1. We can assume that I 6= m. Since
dimV = 1, it follows from [2, Proposition 1.14] that

√
I = m = V m.

Hence, mn ⊆ I for some n ≥ 1. As I 6= m, it follows that n ≥ 2.
Let R = V

mn . Note that n = m
mn is the unique maximal ideal of R, n

is principal, and nn = (0 + I). Hence, we obtain from the proof of

(iii) ⇒ (i) of [2, Proposition 8.8] that I
mn = mi

mn for some i such that
2 ≤ i ≤ n. Therefore, I = mi. Now, it follows from (v) ⇒ (i) of [2,
Proposition 9.2] that V is a discrete valuation ring.
(iii)⇒ (i) We are assuming that V is a discrete valuation ring. Hence,
we obtain from (i) ⇒ (vi) of [2, Proposition 9.2] that there exists
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m ∈ m such that m = V m and {V mn|n ∈ N} is the set of all nonzero
proper ideals of V . Let I, J be distinct nonzero proper ideals of V .
Note that I = V mi and J = V mj for some distinct i, j ∈ N. We can
assume without loss of generality that i < j. Now, I ∩ J = J and
IJ = V mi+j. It is clear that I ∩ J = J 6= IJ = V mi+j. This shows
that I and J are adjacent in g(V ) for any distinct nonzero proper ideals
I, J of V . Therefore, we get that g(V ) is complete. Since g(V ) is a
spanning subgraph of G(V ) and as g(V ) is complete, we obtain that
g(V ) = G(V ). �

Example 2.5. Consider the totally ordered abelian group (Q,+). We
know from [2, Exercise 33, page 72] that it is possible to construct a
field K and a valuation v of K such that the value group of v is (Q,+).
Let V be the valuation ring of v. Then diam(g(V )) = 2, g(V ) 6= G(V ),
and r(g(V )) = 1.

Proof. Let m denote the unique maximal ideal of V . We know from
Proposition 2.1 that g(V ) is connected and diam(g(V )) ≤ 2. As
|V (g(V ))| ≥ 2, it follows that diam(g(V )) ≥ 1. Since the value group
of v is (Q,+), it follows that m = m2. Therefore, we obtain from
Lemma 2.2 (ii) that diam(g(V )) ≥ 2 and so, diam(g(V )) = 2. Since
G(V ) is complete, it follows that g(V ) 6= G(V ). Let m ∈ m,m 6= 0. Let
A = V m. We claim that e(A) = 1 in g(V ). Let I ∈ V (g(V )), I 6= A.
Then either A ⊂ I or I ⊂ A. Suppose that A ⊂ I. Then A ∩ I = A.
Note that AI = Im. If m ∈ Im, then m = am for some a ∈ I. This
implies that m(1− a) = 0. Since 1− a ∈ U(V ), we obtain that m = 0.
This is a contradiction and so, m /∈ Im. Hence, A = A ∩ I 6= AI.
Suppose that I ⊂ A. Then A ∩ I = I. If A ∩ I = AI, then we ob-
tain that I = Im. This implies that I = Imn for all n ∈ N. Hence,
I ⊆ ∩∞n=1V m

n. Let a ∈ I\{0}. Note that for each n ∈ N, there exists
vn ∈ V such that a = vnm

n. This implies that v(a) ≥ nv(m) and so,
v(a)
v(m)

≥ n for each n ∈ N. This is impossible since v(a)
v(m)

is a positive

rational number. Hence, A ∩ I 6= AI. This shows that d(A, I) = 1 in
g(V ) for any I ∈ I(V )∗ with I 6= A. Therefore, e(A) = 1 in g(V ) and
so, r(g(V )) = 1. �

Let R be a chained ring which is not an integral domain, In Propo-
sition 2.6, we determine necessary and sufficient conditions for g(R) to
be complete.

Proposition 2.6. Let (R,m) be a chained ring which is not an integral
domain. The following statements are equivalent:

(i) g(R) = G(R);
(ii) g(R) is complete;
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(iii) (R,m) is a SPIR.

Proof. (i) ⇒ (ii) Let I1, I2 ∈ I(R)∗ be such that I1 6= I2. Since the
set of ideals of R is linearly ordered by inclusion, it follows that either
I1 ⊂ I2 or I2 ⊂ I1 and so, I1 ∩ I2 6= (0). Hence, I1 and I2 are adjacent
in G(R). This shows that G(R) is complete. As we are assuming that
g(R) = G(R), we get that g(R) is complete.
(ii)⇒ (iii) We are assuming that g(R) is complete. Hence, we obtain
from Lemma 2.2(i) that dimR = 0. Hence, m is the only prime ideal
of R. Therefore, we obtain from [2, Proposition 1.8] that nil(R) = m.
We know from Lemma 2.2(ii) that m 6= m2. Since the ideals of R are
comparable under the inclusion relation, it follows as in the proof of
(ii) ⇒ (iii) of Proposition 2.4 that m = Rm for any m ∈ m\m2. As
m = nil(R), we obtain that there exists n ≥ 2 least with the property
that mn = Rmn = (0). It now follows from the proof of (iii) ⇒ (i)
of [2, Proposition 8.8] that {Rmi|i ∈ {1, . . . , n − 1}} is the set of all
nonzero proper ideals of R. Therefore, (R,m) is a SPIR.
(iii)⇒ (i) We are assuming that (R,m) is a SPIR. Let m ∈ m\{0} be
such that m = Rm. Let n ≥ 2 be least with the property that mn = (0).
Observe that {Rmi|i ∈ {1, . . . , n− 1}} is the set of all nonzero proper
ideals of R. It can be shown as in the proof of (iii)⇒ (i) of Proposition
2.4 that g(R) is complete. Since g(R) is a spanning subgraph of G(R)
and g(R) is complete, we obtain that g(R) = G(R). �

Example 2.7. Let (V,m) be the valuation domain considered in Ex-
ample 2.5. Let m ∈ m,m 6= 0. Let R = V

mV
. Then diam(g(R)) = 2,

g(R) 6= G(R), and r(g(R)) = 1.

Proof. Observe that R is a chained ring with n = m
mV

as its unique
maximal ideal. It is already noted in Example 2.5 that m = m2.
Hence, n = n2. It can be shown as in the proof of Example 2.5 that
diam(g(R)) = 2. Since R is a chained ring, we know from the proof
of (i) ⇒ (ii) of Proposition 2.6 that G(R) is complete. Therefore,
g(R) 6= G(R). Let y ∈ m\mV . Let A = yV

mV
. Let B ∈ I(R)∗ with

B 6= A. Then either A ⊂ B or B ⊂ A. Observe that B = I
mV

for some
I ∈ I(V )∗ with mV ⊂ I. We claim that A ∩ B 6= AB. Suppose that
A∩B = AB. It is clear that AB = Iy+mV

mV
. If A ⊂ B, then A∩B = A

and in such a case, we obtain that yV = Iy +mV . Note that m = yw
for some w ∈ m. Hence, y = y(a+wv) for some a ∈ I and v ∈ V . This
implies that y(1− a−wv) = 0. Since 1− a−wv ∈ U(V ), we get that
y = 0. This is a contradiction. If B ⊂ A, then A ∩ B = B. It follows
from the assumption A ∩B = AB that B = AB and so, B = AnB for
each n ∈ N. This implies that I = Iyn +mV for each n ∈ N. Since the
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value group of V is isomorphic to (Q,+), it follows from [2, Exercise
32, page 72] that m is the only nonzero prime ideal of V . Therefore,

we obtain from [2, Proposition 1.14] that
√
yV =

√
mV = m. Hence,

yn ∈ mV for some n ∈ N. It follows from I = Iyn +mV that I ⊆ mV .
This is impossible since mV ⊂ I. Therefore, A ∩ B 6= AB and so, A
and B are adjacent in g(R) for any B ∈ I(R)∗ with B 6= A. This shows
that e(A) = 1 in g(R) and so, we get that r(g(R)) = 1. �

Lemma 2.8. Let (R,m) be a quasilocal ring such that |V (g(R))| ≥ 2.
If ∩∞n=1m

n = (0), then r(g(R)) = 1.

Proof. We know from Proposition 2.1 that g(R) is connected. We claim
that e(m) = 1 in g(R). By hypothesis, |V (g(R)| ≥ 2. Let I ∈ V (g(R))
be such that I 6= m. Note that I ∩ m = I. If I = Im, then we obtain
that I = Imn for all n ≥ 1 and this implies that I ⊆ ∩∞n=1m

n = (0).
This is impossible since I 6= (0). Therefore, I = I ∩ m 6= Im. Hence,
d(m, I) = 1 for each I ∈ V (g(R)) with I 6= m and so, e(m) = 1 in g(R).
This proves that r(g(R)) = 1. �

Proposition 2.9. Let (R,m) be a quasilocal reduced ring which is not
an integral domain. Then diam(g(R)) = 2. If ∩∞n=1m

n = (0), then
r(g(R)) = 1.

Proof. We know from Proposition 2.1 that g(R) is connected and
diam(g(R)) ≤ 2. Since R is not an integral domain, there exist x, y ∈
R\{0} such that xy = 0. As R is reduced, it follows that Rx 6= Ry and
Rx∩Ry = (0). Thus Rx∩Ry = Rxy = (0). Hence, Rx and Ry are not
adjacent in g(R). Indeed, Rx and Ry are not adjacent in G(R).(This
part of the proof does not use the hypothesis that R is quasilocal.)
Therefore, we obtain that diam(g(R)) ≥ 2 and so, diam(g(R)) = 2. If
∩∞n=1m

n = (0), then we obtain from Lemma 2.8 that r(g(R)) = 1. �

Let (R,m) be a quasilocal reduced ring which is not an integral
domain. We know from Remark 2.3 that G(R) is connected and
diam(G(R)) ≤ 2. As R is not an integral domain, it follows that
diam(G(R)) ≥ 2 (see the proof of Proposition 2.9) and so, diam(G(R))
= 2. Since |I(R)∗| ≥ 2, we obtain from Remark 2.3 that r(G(R)) = 1.
We provide in Example 2.10, an example of a local reduced ring (R,m)
which is not an integral domain such that G(R) 6= g(R).

Example 2.10. Let T = K[[X, Y ]] be the power series in two variables
X, Y over a field K. Let us denote the ideal TX∩TY by I. Let R = T

I
.

Then R is a local reduced ring, R is not an integral domain, and is such
that G(R) 6= g(R).
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Proof. We know from [2, Exercise 5(iv), page 11] that m = TX+TY is
the only maximal ideal of T . We know from [9, Theorem 71] that T is
Noetherian. Hence, we obtain that (T,m) is local. Therefore, R is local
with n = m

I
as its unique maximal ideal. Observe that p1 = TX and

p2 = TY are prime ideals of T and I = p1∩p2. Hence, R = T
I

is reduced.
Observe that X /∈ TY , Y /∈ TX, and I = TXY . Let us denote X + I
by x and Y +I by y. Note that x and y are nonzero elements of R. Since
XY ∈ I, we get that xy = 0+I. Therefore, R is not an integral domain.
As is mentioned in the introduction, we know that g(R) is a spanning
subgraph of G(R). Since TX and T (X + Y ) are incomparable prime
ideals of T , we obtain that TX ∩ T (X + Y ) = T (X2 + XY ). Hence,
Rx,R(x+y) ∈ I(R)∗ are such that Rx∩R(x+y) = R(x2 +xy) = Rx2.
Therefore, Rx and R(x + y) are not adjacent in g(R). As x2 6= 0 + I,
it follows that Rx and R(x + y) are adjacent in G(R). This proves
that G(R) 6= g(R). It is noted in the paragraph just preceding the
statement of Example 2.10 that diam(G(R)) = 2 and r(G(R)) = 1.
Since (R, n) is a local ring, we obtain from [2, Corollary 10.20] that
∩∞n=1n

n = (0 + I). Therefore, we obtain from Proposition 2.9 that
diam(g(R)) = 2 and r(g(R)) = 1. �

Proposition 2.11. Let R be a ring such that dimR > 0. Then g(R)
contains an infinite clique. In particular, if (R,m) is a quasilocal ring
such that m 6= nil(R), then g(R) contains an infinite clique.

Proof. By hypothesis, dimR > 0. Hence, there exist prime ideals p1, p2
of R such that p1 ⊂ p2. Let a ∈ p2\p1. Then an /∈ p1 for each
n ∈ N and so, an 6= 0 for all n ∈ N. Let i, j ∈ N with i 6= j.
We claim that Rai 6= Raj. We can assume that i < j. Suppose
that Rai = Raj. Then ai = raj for some r ∈ R. This implies that
ai(1 − raj−i) = 0. As ai /∈ p1, we obtain that 1 − raj−i ∈ p1 ⊂ p2.
Since a ∈ p2, it follows that 1 = 1 − raj−i + raj−i ∈ p2. This is
impossible and so, Rai 6= Raj. Let t, k ∈ N with t 6= k. Note that
Rat ∩ Rak = Ramax(t,k) 6= Rat+k = (Rat)(Rak). Hence, Rat and Rak

are adjacent in g(R). Therefore, the subgraph of g(R) induced on
{Ran|n ∈ N} is an infinite clique.

We next verify the in particular statement of this Proposition. If
(R,m) is a quasilocal ring with m 6= nil(R), then it follows from [2,
Proposition 1.8] that there exists p ∈ Spec(R) such that p ⊂ m and
so, dimR > 0. Therefore, it follows as in the previous paragraph that
g(R) contains an infinite clique. �

Proposition 2.12. Let R be a ring. If there exists an ideal I of R with
I ⊆ J(R) such that I is not finitely generated, then g(R) contains an
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infinite clique. In particular, if (R,m) is a quasilocal ring such that I is
not finitely generated for some proper ideal I of R, then g(R) contains
an infinite clique.

Proof. Since we are assuming that there exists an ideal I ⊆ J(R) such
that I is not finitely generated, there exists xn ∈ J(R)\{0} for each
n ∈ N such that Rx1 + · · · + Rxn−1 ⊂ Rx1 + Rx2 + · · · + Rxn for all
n ≥ 2. For each n ∈ N, let us denote the ideal Rx1 + · · ·+Rxn by In.
We claim that the subgraph of g(R) induced on {In|n ∈ N} is a clique.
Let i, j ∈ N with i 6= j. We can assume that i < j. As Ii ⊂ Ij, it
follows that Ii∩Ij = Ii. Observe that Ii∩Ij 6= IiIj. For if Ii∩Ij = IiIj,
then we get that Ii = IiIj. As Ii is finitely generated and Ij ⊆ J(R),
we obtain from Nakayama’s lemma [2, Proposition 2.6] that Ii = (0).
This is a contradiction. Therefore, Ii ∩ Ij 6= IiIj. Hence, Ii and Ij are
adjacent in g(R) for all distinct i, j ∈ N. This shows that the subgraph
of g(R) induced on {In|n ∈ N} is a clique and so, we obtain that g(R)
contains an infinite clique.

We next verify the in particular statement of this Proposition. Sup-
pose that (R,m) is a quasilocal ring such that I is not finitely generated
for some proper ideal I of R. Observe that I ⊆ m, J(R) = m, and so,
we obtain as in the previous paragraph that g(R) contains an infinite
clique. �

Proposition 2.13. Let (R,m) be a quasilocal ring which is not a field.
If g(R) does not contain any infinite clique, then R is Artinian. In
particular, if R is not Artinian, then girth(g(R)) = 3.

Proof. Since we are assuming that g(R) does not contain any infinite
clique, we obtain from Proposition 2.11 that dimR = 0 and it follows
from Proposition 2.12 that each ideal of R is finitely generated. There-
fore, R is Noetherian. Thus R is Noetherian and dimR = 0. Hence, it
follows from [2, Theorem 8.5] that R is Artinian.

We next verify the in particular statement of this Proposition. Sup-
pose that R is not Artinian. Then it follows that g(R) contains an
infinite clique and so, girth(g(R)) = 3. �

Let (R,m) be a quasilocal ring which is not a field. In view of
Proposition 2.13, in determining girth(g(R)), we can assume that R is
Artinian. If (R,m) is a local Artinian ring, then we show in Proposition
2.15 that girth(g(R)) ∈ {3,∞}.
Lemma 2.14. Let (R,m) be a local ring. Let I, J ∈ I(R)∗ be such that
I ⊂ J . Then I and J are adjacent in g(R).

Proof. As I ⊂ J , it follows that I ∩ J = I. Since R is Noetherian, I
is finitely generated. Now, I 6= (0), J ⊆ m = J(R) and so, we obtain
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from Nakayama’s lemma [2, Proposition 2.6] that I 6= IJ . Therefore,
I ∩ J 6= IJ . Therefore, I and J are adjacent in g(R). �

Proposition 2.15. Let (R,m) be a local Artinian ring which is not a
field. The following statements are equivalent:

(i) g(R) contains a cycle;
(ii) girth(g(R)) = 3.

Proof. Let I ∈ I(R)∗ be such that I 6= m. Since R is Artinian, we know
from [2, Theorem 8.5] that R is Noetherian. Hence, we obtain from
Lemma 2.14 that I and m are adjacent in g(R).
(i) ⇒ (ii) We are assuming that g(R) contains a cycle. Hence, there
exist I1, I2 ∈ I(R)∗\{m} such that I1 and I2 are adjacent in g(R). As
m and I are adjacent in g(R) for any I ∈ I(R)∗\{m}, we get that
I1− I2−m− I1 is a cycle of length three in g(R). Therefore, we obtain
that girth(g(R)) = 3.
(ii)⇒ (i) This is clear. �

We next try to characterize local Artinian rings (R,m) which are not
fields such that g(R) does not contain any cycle. First, we assume that
m is principal. In such a case, we know from the proof of (iii)⇒ (i) of
[2, Proposition 8.8] that (R,m) is SPIR.

Lemma 2.16. Let (R,m) be a SPIR which is not a field. Let n ≥ 2
be least with the property that mn = (0). Then ω(g(R)) = ω(G(R)) =
n− 1.

Proof. Note that m is principal and n ≥ 2 is least with the property
that mn = (0). Therefore, we obtain from the proof of (iii)⇒ (i) of [2,
Proposition 8.8] that {mi|i ∈ {1, . . . , n − 1}} is the set of all nonzero
proper ideals of R. Moreover, we know from (iii)⇒ (ii) of Proposition
2.6 that g(R) is complete. Hence, we obtain that ω(g(R)) = n − 1.
From (iii) ⇒ (i) of Proposition 2.6, we get that g(R) = G(R) and so,
ω(G(R)) = n− 1. �

Corollary 2.17. Let (R,m) be a SPIR which is not a field. Let
n ≥ 2 be least with the property that mn = (0). Then girth(g(R)) =
girth(G(R)) =∞ if and only if n ∈ {2, 3}.

Proof. We know from the proof of Lemma 2.16 that g(R) = G(R)
is a complete graph on n − 1 vertices. Therefore, it is clear that
girth(g(R)) = girth(G(R)) = ∞ if and only if n − 1 ∈ {1, 2}, that
is, if and only if n ∈ {2, 3}. �

Theorem 2.18. Let (R,m) be a local Artinian ring such that m is not
principal. Then the following statements are equivalent:
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(i) girth(G(R)) =∞;
(ii) girth(g(R)) =∞;
(iii) Each I ∈ I(R)∗\{m} is a minimal ideal of R;
(iv) g(R) = G(R) and g(R) is a star graph.

Proof. (i) ⇒ (ii) We are assuming that G(R) does not contain any
cycle. As g(R) is a spanning subgraph of G(R), it follows that g(R)
does not contain any cycle and so, girth(g(R)) =∞.
(ii) ⇒ (iii) Let I ∈ I(R)∗ be such that I 6= m. If I is not a minimal
ideal of R, then there exists J ∈ I(R)∗ such that J ⊂ I. Then it follows
from Lemma 2.14 that I−J−m−I is a cycle of length 3 in g(R). This is
in contradiction to the assumption that girth(g(R)) = ∞. Therefore,
I is a minimal ideal of R.
(iii)⇒ (iv) By hypothesis, m is not principal. Hence, there are ideals
I ∈ I(R)∗ such that I 6= m. Note that V (g(R)) = V (G(R)) = {m} ∪
{I ∈ I(R)∗|I 6= m}. We know from Lemma 2.14 that in g(R), m is
adjacent to any I ∈ I(R)∗ such that I 6= m and so, m is adjacent to
any I ∈ I(R)∗ with I 6= m in G(R). Let I, J ∈ I(R)∗\{m} with I 6= J .
By hypothesis, I, J are minimal ideals of R. As I 6= J , we obtain that
I ∩ J = (0). Therefore, I and J are not adjacent in G(R) and so, they
are not adjacent in g(R). This shows that g(R) = G(R) and g(R) is a
star graph.
(iv) ⇒ (i) Since G(R) is a star graph, we get that girth(G(R)) =
∞. �

We provide some examples in Example 2.19 to illustrate Theorem
2.18.

Example 2.19. (i) Let T = K[X, Y ] be the polynomial ring in two
variables X, Y over a field K. Let I = m2, where m = TX + TY . Let
R = T

I
. Then (R, m

I
) is a local Artinian ring with girth(g(R)) = ∞

and g(R) = G(R).
(ii) Let T be as in (i) and let J = TX2+TY 2. Let R = T

J
. Then (R, m

J
),

where m is as in (i), is a local Artinian ring with girth(g(R)) = 3 and
g(R) 6= G(R).

Proof. (i) Note that by Hilbert’s basis theorem [2, Theorem 7.5], T
is Noetherian. As m ∈ Max(T ), it follows that m

I
= m

m2 is the only

prime ideal of R. Hence, R = T
I

is a Noetherian ring and dimR = 0.
Therefore, we obtain from [2, Theorem 8.5] that R is Artinian and so,
(R, m

I
) is a local Artinian ring. It is convenient to denote X + I by x

and Y +I by y. Observe that m
I

= Rx+Ry is not principal and it is not
hard to verify that I(R)∗ = {Rx,Ry,R(x+ αy), Rx+Ry|α ∈ K\{0}}
and so, each nonzero proper ideal of R other than its unique maximal
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ideal is a minimal ideal of R. Therefore, we obtain from (iii) ⇒ (ii)
of Theorem 2.18 that girth(g(R)) = ∞. Moreover, we obtain from
(iii)⇒ (iv) of Theorem 2.18 that g(R) = G(R).
(ii) Since m = TX + TY ∈ Max(T ), it follows that m

J
= m

TX2+TY 2 is

the only prime ideal of R = T
J

. Hence, we obtain that (R, m
J

) is a local
Artinian ring. It is convenient to denote X + J by x and Y + J by y.
Observe that m

J
= Rx + Ry is not principal, xy 6= 0 + J , Rxy ⊂ Rx,

and Rxy ⊂ Ry. Therefore, R admits nonzero proper ideals other than
its unique maximal ideal such that they are not minimal ideals of R.
Hence, we obtain from (ii)⇒ (iii) of Theorem 2.18 that g(R) contains
a cycle and so, it follows from (i) ⇒ (ii) of Proposition 2.15 that
girth(g(R)) = 3. Indeed, it follows from the proof of (i) ⇒ (ii) of
Proposition 2.15 that Rx−Rxy−Rx+Ry−Rx is a cycle of length three
in g(R). Let I1 = Rx and let I2 = R(x+y). It is clear that I1, I2 ∈ I(R)∗

and I1 6= I2. Observe that I1∩I2 = Rxy and since x2 = 0+J , it follows
that I1 ∩ I2 = Rxy = (Rx)(R(x+ y)) = I1I2. Hence, I1 and I2 are not
adjacent in g(R). However, as I1 ∩ I2 6= (0 + J), we get that I1 and I2
are adjacent in G(R). Therefore, g(R) 6= G(R). �

Let (R,m) be a quasilocal ring which is not a field. We prove in
Theorem 2.20 that G(R) is a bipartite graph if and only if g(R) = G(R)
is a star graph.

Theorem 2.20. Let (R,m) be a quasilocal ring which is not a field.
The following statements are equivalent:

(i) G(R) is a bipartite graph;
(ii) Either (R,m) is a SPIR with m3 = (0) but m2 6= (0) or (R,m) is a

local Artinian ring such that m is not principal and any I ∈ I(R)∗\{m}
is a minimal ideal of R;

(iii) g(R) = G(R) is a star graph.

Proof. (i) ⇒ (ii) We are assuming that G(R) is a bipartite graph.
Since g(R) is a spanning subgraph of G(R), we obtain that g(R) is also
a bipartite graph. Hence, |I(R)∗| ≥ 2 and ω(g(R)) ≤ 2. Therefore, we
obtain from Proposition 2.13 that (R,m) is a local Artinian ring. We
consider the following cases.
Case(1): m is principal.

In this case (R,m) is a SPIR. Let n ≥ 2 be least with the property
that mn = (0). Observe that I(R)∗ = {mi|i ∈ {1, . . . , n − 1}}. Since
|I(R)∗| ≥ 2, it follows that n ≥ 3. As g(R) is a bipartite graph, we
obtain from (i) ⇒ (ii) of Proposition 2.15 that girth(g(R)) = ∞ and
so, it follows from Corollary 2.17 that n = 3. Therefore, m3 = (0) but
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m2 6= (0).
Case(2): m is not principal.

Since g(R) is a bipartite graph, it follows from (i)⇒ (ii) of Proposi-
tion 2.15 that girth(g(R)) =∞. Therefore, we obtain from (ii)⇒ (iii)
of Theorem 2.18 that any I ∈ I(R)∗\{m} is a minimal ideal of R.
(ii)⇒ (iii) Suppose that (R,m) is a SPIR with m3 = (0) but m2 6= (0).
Note that g(R) = G(R) is a complete graph on the vertex set {m,m2}.
Hence, g(R) = G(R) is a star graph. Suppose that (R,m) is a local
Artinian ring such that m is not principal and any I ∈ I(R)∗\{m} is a
minimal ideal of R. Then we obtain from (iii)⇒ (iv) of Theorem 2.18
that g(R) = G(R) and g(R) is a star graph.
(iii)⇒ (i) This is clear. �

Let (R,m) be a quasilocal ring which is not a field. If g(R) does not
contain any infinite clique, then it is shown in Proposition 2.13 that
R is Artinian. In Example 2.22 (i), we provide an example of a local
Artinian ring (R,m) such that g(R) contains an infinite clique.

Theorem 2.21. Let (R,m) be a local Artinian ring such that
dimR

m
( m
m2 ) = n ≥ 3. The following statements are equivalent:

(i) χ(G(R)) <∞;
(ii) ω(G(R)) <∞;
(iii) ω(g(R)) <∞;
(iv) g(R) does not contain any infinite clique;
(v) R is finite.

Proof. (i) ⇒ (ii) If χ(G(R)) < ∞, then as ω(G(R)) ≤ χ(G(R)), we
obtain that ω(G(R)) <∞.
(ii) ⇒ (iii) By assumption, ω(G(R)) < ∞. Since g(R) is a spanning
subgraph of G(R), it follows that ω(g(R)) <∞.
(iii)⇒ (iv) This is clear.
(iv) ⇒ (v) Let {x1, x2, x3, . . . , xn} ⊆ m be such that {x1 + m2, x2 +
m2, x3 + m2, . . . , xn + m2} is a basis of m

m2 as a vector space over R
m

.
On applying [2, Proposition 2.8] with M = m, we obtain that m =∑n

i=1Rxi. Let us denote the ideal
∑n−1

i=1 Rxi + m2 by I. Note that
dimR

m
(m
I
) = 1. Let us denote the collection consisting of all proper

ideals W of R such that W ⊇ m2 and dimR
m

( m
W

) = 1 by C. It is

clear that I ∈ C and so, C is nonempty. As dimR
m

( m
m2 ) = n ≥ 3 by

hypothesis, it follows that m2 ⊂ W for any W ∈ C. We claim that the
subgraph of g(R) induced on C is a clique. Let W1,W2 ∈ C be such that
W1 6= W2. Since W1 and W2 are not comparable under the inclusion
relation, we obtain that W1+W2 = m. Observe that dimR

m
(Wi

m2 ) = n−1
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for each i ∈ {1, 2}. It is convenient to denote Wi

m2 by Ni for each

i ∈ {1, 2}. It is clear that N1∩N2 = W1∩W2

m2 and N1+N2 = W1+W2

m2 = m
m2 .

Note that dimR
m

(N1 ∩N2) = dimR
m
N1 + dimR

m
N2 − dimR

m
(N1 + N2) =

n− 1 + n− 1− n = n− 2 ≥ 1. Therefore, we get that W1 ∩W2 ⊃ m2.
As W1W2 ⊆ m2, it follows that W1 ∩W2 6= W1W2. Hence, W1 and W2

are adjacent in g(R) and this proves that the subgraph of g(R) induced
on C is a clique. Since we are assuming that g(R) does not contain any
infinite clique, we obtain that C is a finite collection. Let the elements
x1, x2, x3, . . . , xn ∈ m be as mentioned in the beginning of the proof
of (iv) ⇒ (v) of this Theorem. Let r ∈ R. Observe that the ideal
A(r) = Rx1 + · · ·+R(xn−1 + rxn) +m2 ∈ C. Let r, s ∈ R be such that
r − s /∈ m. We assert that A(r) 6= A(s). Suppose that A(r) = A(s).
Then xn−1 + rxn, xn−1 + sxn ∈ A(r) = A(s). Hence, (r − s)xn ∈ A(r).
Since r − s is a unit in R, it follows that xn ∈ A(r) and so, xi ∈ A(r)
for each i ∈ {1, 2, . . . , n}. Therefore, A(r) =

∑n
i=1Rxi = m. This is

a contradiction. Therefore, A(r) 6= A(s). It follows from C is finite
that R

m
is finite. Since (R,m) is a local Artinian ring, we obtain from

[2, Proposition 8.4] that m is nilpotent. Let k ≥ 2 be least with the

property that mk = (0). Let j ∈ {1, . . . , k − 1}. As mj

mj+1 is a finite-

dimensional vector space over the finite field R
m

, we get that mj

mj+1 is

finite. Therefore, we obtain that m is finite. Now, m, R
m

are finite and
so, R is finite.
(v)⇒ (i) Since R is finite, I(R)∗ is a finite collection, and so, χ(G(R))
is finite. �

We provide some examples in Example 2.22 to illustrate Theorem
2.21.

Example 2.22. (i) Let K be an infinite field. Let T = K[X, Y, Z] be
the polynomial ring in three variables X, Y, Z over K and let I = m2,
where m = TX+TY +TZ. Let R = T

I
. Then g(R) contains an infinite

clique.
(ii) Let K be an infinite field. Let T = K[X, Y ] be the polynomial
ring in two variables X, Y over K. Let I = m2, where m = TX + TY .
Let R = T

I
. Then ω(g(R)) = 2.

Proof. (i) Observe that R is a local Artinian ring with m
I

as its unique
maximal ideal. It is convenient to denote m

I
by n. Let us denote the

field R
n

by k. Note that dimk( n
n2

) = 3. As K is infinite, we obtain that
R is infinite. Therefore, we obtain from (iv) ⇒ (v) of Theorem 2.21
that g(R) contains an infinite clique.
(ii) Note that R is a local Artinian ring with m

I
as its unique maximal
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ideal. Let us denote m
I

by n and the field R
n

by k. Observe that
dimk( n

n2
) = 2. Hence, n is not principal. It is verified already in

Example 2.19(i) that each nonzero proper ideal of R other than n is a
minimal ideal of R. Therefore, we obtain from (iii)⇒ (iv) of Theorem
2.18 that g(R) is a star graph. Hence, we obtain that ω(g(R)) = 2.
Since K is infinite, it follows that R is infinite. Thus this example
illustrates that (iv) ⇒ (v) of Theorem 2.21 can fail to hold if the
hypothesis that the unique maximal ideal of the local Artinian ring
requires at least three generators is omitted. �

3. Some results in the case, where R is not quasilocal

Let R be a ring such that |Max(R)| ≥ 2. The aim of this section is
to investigate some graph-theoretic properties of g(R). We first try to
determine R such that g(R) is connected.

Lemma 3.1. Let n ≥ 2. Let Ri be a nonzero ring for each i ∈
{1, 2, . . . , n}. If R = R1 ×R2 × · · · ×Rn, then g(R) is not connected.

Proof. It is clear that R1 × (0) × · · · × (0) ∈ V (g(R)). We claim that
R1 × (0) × · · · × (0) is an isolated vertex of g(R). Suppose that R1 ×
(0) × · · · × (0) − A is an edge of g(R). As A ∈ I(R)∗, it follows that
A = I1×I2×· · ·×In, where Ii is an ideal of Ri for each i ∈ {1, 2, . . . , n}
with I1 × I2 × · · · × In /∈ {R1 × R2 × · · · × Rn, (0) × (0) × · · · × (0)}.
Note that (R1 × (0) × · · · × (0)) ∩ (I1 × I2 × · · · × In) = I1 × (0) ×
· · · × (0) = (R1 × (0)× · · · × (0))(I1 × I2 × · · · × In). This implies that
R1× (0)×· · ·× (0) and I1× I2×· · ·× In = A are not adjacent in g(R).
This is a contradiction and so, we get that R1 × (0) × · · · × (0) is an
isolated vertex of g(R). As |V (g(R)| ≥ 2, we obtain that g(R) is not
connected. �

Proposition 3.2. Let R be a ring such that |Max(R)| ≥ 2. Then the
following statements are equivalent:

(i) G(R) is connected;
(ii) m1 ∩m2 6= (0) for any two distinct m1,m2 ∈Max(R).
Moreover, if (i) or (ii) holds, then diam(G(R)) ≤ 2.

Proof. (i) ⇒ (ii) We are assuming that G(R) is connected. Suppose
that m1 ∩ m2 = (0) for some distinct m1,m2 ∈ Max(R). Since m1 +
m2 = R, we obtain from the Chinese remainder theorem [2, Proposition
1.10(ii) and (iii)] that the mapping f : R → R

m1
× R

m2
defined by

f(r) = (r + m1, r + m2) is an isomorphism of rings. Let us denote the
field R

mi
by Fi for each i ∈ {1, 2}. Let us denote the ring F1 × F2 by

T . Note that R ∼= T as rings. Since we are assuming that G(R) is



A SUBGRAPH OF THE INTERSECTION GRAPH OF IDEALS OF A RING 53

connected, it follows that G(T ) is connected. However, observe that
I(T )∗ = {(0)× F2, F1 × (0)}. Since (0)× F2) ∩ (F1 × (0)) = (0)× (0),
we get that G(T ) has no edges. Therefore, G(T ) is not connected.
This is a contradiction. Hence, m1 ∩ m2 6= (0) for any two distinct
m1,m2 ∈Max(R).
(ii)⇒ (i) Let I1, I2 ∈ I(R)∗ be such that I1 6= I2. We prove that there
exists a path of length at most two between I1 and I2 in G(R). We can
assume that I1 and I2 are not adjacent in G(R). Hence, I1 ∩ I2 = (0).
We consider the following cases.
Case(1): I1 + I2 6= R.

Let m ∈ Max(R) be such that I1 + I2 ⊆ m. Then Ii ∩m = Ii 6= (0)
for each i ∈ {1, 2} and so, I1 −m− I2 is a path of length two between
I1 and I2 in G(R).
Case(2): I1 + I2 = R.

Let i ∈ {1, 2}. Let mi ∈ Max(R) be such that Ii ⊆ mi. It follows
from I1 + I2 = R that m1 6= m2. By hypothesis, m1 ∩ m2 6= (0). Let
x ∈ m1 ∩m2, x 6= 0. From R = I1 + I2, we obtain that Rx = I1x+ I2x.
Therefore, either I1x 6= (0) or I2x 6= (0). Suppose that I1x 6= (0). Then
I1m2 6= (0) and it is clear that I2∩m2 = I2 6= (0). Hence, I1−m2−I2 is a
path of length two between I1 and I2 in G(R). Suppose that I2x 6= (0).
Then I2m1 6= (0). Observe that I1∩m1 = I1 6= (0). Hence, in this case,
I1 −m1 − I2 is a path of length two between I1 and I2 in G(R).

This proves that G(R) is connected and diam(G(R)) ≤ 2.
The moreover part of this Proposition is already verified in the proof

of (ii)⇒ (i) of this Proposition. �

Let R be a ring with |Max(R)| ≥ 2. We are interested in knowing the
status of Proposition 3.2 in the case of g(R). We prove in Proposition
3.4 that for g(R) to be connected, it is necessary that dimR > 0.

Lemma 3.3. Let R be a von Neumann regular ring which is not a
field. Then R admits at least one nontrivial idempotent element.

Proof. Since R is not a field, it is possible to find a ∈ R\{0} such that a
is not a unit in R. From the hypothesis that R is von Neumann regular,
it follows that that there exists b ∈ R such that a = a2b. Therefore,
ab = a2b2 = (ab)2. It is clear that e = ab is a nontrivial idempotent
element of R. �

Proposition 3.4. Let R be a ring with dimR = 0. If |Max(R)| ≥ 2,
then g(R) is not connected.

Proof. Let us denote the ring R
nil(R)

by T . Note that dimT = 0 and T is

reduced. Hence, we obtain from (d)⇒ (a) of [6, Exercise 16, page 111]
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that T is von Neumann regular. Observe that |Max(T )| = |Max(R)| ≥
2 and so, T is not a field. Therefore, we obtain from Lemma 3.3 that
T admits at least one nontrivial idempotent. Let r ∈ R be such that
r+nil(R) is a nontrivial idempotent element of T . Since nil(R) is a nil
ideal of R, it follows from [7, Proposition 7.14] that there exists a unique
idempotent element e of R such that r+nil(R) = e+nil(R). It is clear
that e is nontrivial. Observe that the mapping f : R→ Re×R(1− e)
defined by f(x) = (xe, x(1 − e)) is an isomorphism of rings. Let us
denote the ring Re by R1 and R(1 − e) by R2. Note that R1 and R2

are nonzero rings and R ∼= R1 × R2 as rings. We know from Lemma
3.1 that g(R1 × R2) is not connected and so, we obtain that g(R) is
not connected. �

Let R be a ring such that dimR = 0 and R is reduced. We know
from (a) ⇔ (d) of [6, Exercise 16, page 111] that a ring R is von
Neumann regular if and only if dimR = 0 and R is reduced. We
prove in Proposition 3.5 that if R is a von Neumann regular ring with
|Max(R)| ≥ 2, then g(R) has no edges.

Proposition 3.5. Let R be a ring with |Max(R)| ≥ 2. If R is von
Neumann regular, then g(R) has no edges.

Proof. Suppose that R is von Neumann regular. Let a ∈ R. We know
from (1) ⇒ (3) of [6, Exercise 29, page 113] that there exists a unit u
of R and an idempotent element e of R such that a = ue. Using this
fact, it follows easily that each proper ideal I of R is a radical ideal of
R. Let I1, I2 ∈ I(R)∗ be such that I1 6= I2. We know from [2, Exercise
1.13(iii), page 9] that

√
I1I2 =

√
I1 ∩ I2. Since each ideal of R is a

radical ideal of R, we obtain that I1 ∩ I2 =
√
I1 ∩ I2 =

√
I1I2 = I1I2.

Therefore, I1 and I2 are not adjacent in g(R). This shows that g(R)
has no edges. �

Let R be an integral domain which is not a field. Irrespective of the
size of Max(R), it is well-known that G(R) is complete. In Proposition
3.6, we discuss the status of this result in the case of g(R), where R is
an integral domain with |Max(R)| ≥ 2.

Proposition 3.6. Let R be an integral domain with |Max(R)| ≥ 2.
Then g(R) is connected and diam(g(R)) = 2.

Proof. Let I1, I2 ∈ I(R)∗ be such that I1 6= I2. We prove that there
exists a path of length at most two between I1 and I2 in g(R). We can
assume that I1 and I2 are not adjacent in g(R). For each i ∈ {1, 2},
let ai ∈ Ii\{0}. Since R is an integral domain a1a2 6= 0. Let us denote
the ideal Ra1a2 by A. It is clear that A ∈ I(R)∗. Let i ∈ {1, 2}.
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Since A ⊆ Ii, it follows that A ∩ Ii = A. We claim that A 6= AIi.
For if A = AIi, then a1a2 = a1a2bi for some bi ∈ Ii. This implies
that a1a2(1 − bi) = 0. This is impossible since a1a2, 1 − bi ∈ R\{0}
and R is an integral domain. Therefore, A = A ∩ Ii 6= AIi for each
i ∈ {1, 2}. Hence, A and Ii are adjacent in g(R) for each i ∈ {1, 2}
and so, I1 − A − I2 is a path of length two between I1 and I2 in
g(R). This shows that g(R) is connected and diam(g(R)) ≤ 2. Since
|Max(R)| ≥ 2 by assumption, there exist m1,m2 ∈ Max(R) such that
m1 6= m2. It follows from m1+m2 = R that m1∩m2 = m1m2. Hence, m1

and m2 are not adjacent in g(R) and so, we obtain that diam(g(R)) ≥ 2.
Therefore, diam(g(R)) = 2. �

Corollary 3.7. Let R be an integral domain with |Max(R)| ≥ 2. If
J(R) = (0), then diam(g(R)) = r(g(R)) = 2.

Proof. We know from Proposition 3.6 that g(R) is connected and
diam(g(R)) = 2. (For this part of the proof, we do not need the
assumption that J(R) = (0).) Suppose that J(R) = (0). Let I ∈
V (g(R)) = I(R)∗. From J(R) = (0), it follows that I 6⊆ m for some
m ∈ Max(R). Hence, I + m = R and so, I ∩ m = Im. Therefore, I
and m are not adjacent in g(R). This shows that d(I,m) ≥ 2 in g(R).
It follows from diam(g(R)) = 2 that e(I) = 2. Thus for any I ∈ I(R)∗,
e(I) = 2 in g(R) and so, we obtain that r(g(R)) = 2. �

Corollary 3.8. Let R be an integral domain. Then diam(g(R[X])) =
r(g(R[X])) = 2, where R[X] is the polynomial ring in one variable X
over R.

Proof. Note that R[X] is an integral domain. Let m ∈ Max(R). Ob-

serve that R[X]
m[X]

∼= R
m

[X], the polynomial ring in one variable X over

the field R
m

. Hence, R[X]
m[X]

has an infinite number of maximal ideals and

so, Max(R[X]) is infinite. We know from [2, Exercise 4, page 11] that
J(R[X])) = nil(R[X]) = (0). Therefore, we obtain from Corollary 3.7
that diam(g(R[X])) = r(g(R[X])) = 2. �

Let R be an integral domain with |Max(R)| ≥ 2. It is clear that
r(g(R)) ≥ 1. We are not able to characterize integral domains R such
that r(g(R)) = 1. In Theorem 3.9, we characterize Noetherian domains
R with dimR = 1 such that r(g(R)) = 1.

Theorem 3.9. Let R be a Noetherian domain with dimR = 1 and
|Max(R)| ≥ 2. The following statements are equivalent:

(i) r(g(R)) = 1;
(ii) R is semilocal.
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Proof. (i) ⇒ (ii) We are assuming that r(g(R)) = 1. It follows from
Corollary 3.7 that J(R) 6= (0). Let a ∈ J(R)\{0}. Since R is Noe-
therian, we know from [2, Theorem 7.13] that Ra admits a primary
decomposition. Let Ra = ∩ni=1qi be an irredundant primary decompo-
sition of Ra, where qi is a pi -primary ideal of R for each i ∈ {1, . . . , n}.
Since dimR = 1, it follows that any nonzero prime ideal of R is max-
imal. Hence, pi ∈ Max(R) for each i ∈ {1, . . . , n}. Let m ∈ Max(R).
Now, as a ∈ m, we get that m ⊇ Ra = ∩ni=1qi. Therefore, we obtain
from [2, Proposition 1.11(ii)] that m ⊇ qi for some i ∈ {1, . . . , n} and
so, m ⊇ √qi = pi. Hence, m = pi for some i ∈ {1, . . . , n}. This shows
that Max(R) = {pi|i ∈ {1, . . . , n}} and therefore, we obtain that R is
semilocal.
(ii)⇒ (i) We are assuming thatR is a Noetherian domain, |Max(R)| ≥
2, and Max(R) is finite. Let Max(R) = {mi|i ∈ {1, 2, . . . , n}}. Note
that J(R) = ∩ni=1mi. We claim that e(J(R)) = 1 in g(R). (We prove
this claim without assuming that dimR = 1.) Let I ∈ I(R)∗ be such
that I 6= J(R). Observe that I ⊆ mi for some i ∈ {1, 2, . . . , n}. Hence,
Imi
⊆ (mi)mi

. Now, since (mk)mi
= Rmi

for each k ∈ {1, 2, . . . , n}\{i},
we obtain from [2, Proposition 3.11(v)] that (J(R))mi

= (∩nk=1mk)mi
=

(mi)mi
. Note that (I ∩ J(R))mi

= Imi
∩ J(R)mi

= Imi
∩ (mi)mi

= Imi
. It

follows from [2, Proposition 3.11(v)] that (IJ(R))mi
= Imi

(mi)mi
. We

verify that I ∩ J(R) 6= IJ(R). Suppose that I ∩ J(R) = IJ(R). Then
(I ∩J(R))mi

= (IJ(R))mi
. This implies that Imi

= Imi
(mi)mi

. We know
from [2, Example 1, page 38] that (mi)mi

is the unique maximal ideal
of Rmi

. Since R is Noetherian, we obtain from [2, Corollary 7.4] that
Rmi

is Noetherian. Hence, Rmi
is a local domain. As Imi

= Imi
(mi)mi

,
we obtain from Nakayama’s lemma [2, Proposition 2.6] that Imi

= (0)
and so, I = (0). This is a contradiction. Therefore, I ∩ J(R) 6= IJ(R)
for any I ∈ I(R)∗ with I 6= J(R). This shows that J(R) is adjacent to
any I ∈ I(R)∗ with I 6= J(R) in g(R). Hence, e(J(R)) = 1 in g(R) and
so, we get that r(g(R)) = 1. �

Let R be a ring such that |Max(R)| ≥ 2. Our aim is to determine
girth(g(R)). If dimR > 0, then we know from Proposition 2.11 that
g(R) contains an infinite clique and so, girth(g(R)) = 3. If there exists
an ideal I of R with I ⊆ J(R) such that I is not finitely generated, then
we know from Proposition 2.12 that g(R) contains an infinite clique and
so, girth(g(R)) = 3. Hence, in determining girth(g(R)), we can assume
that dimR = 0 and all the ideals I of R with I ⊆ J(R) are finitely
generated. IfR is reduced, thenR is von Neumann regular and we know
from Proposition 3.5 that g(R) has no edges and so, girth(g(R)) =∞.
Hence, in determining girth(g(R)), we can assume that dimR = 0
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and R is not reduced. With the hypothesis that dimR = 0 and R is
not reduced and Max(R) is infinite, we prove in Theorem 3.10 that
ω(g(R)) =∞.

Theorem 3.10. Let R be a ring such that dimR = 0 and R is not
reduced. If Max(R) is infinite, then ω(g(R)) =∞.

Proof. Let m ≥ 1. We claim that there exist nonzero rings R1, R2, . . . ,
Rm+1 such that dimRi = 0 for each i ∈ {1, 2, . . . ,m + 1} and R ∼=
R1 × R2 × · · · × Rm+1 as rings. We are assuming that Max(R) is
infinite. Hence, we obtain from the proof of Proposition 3.4 that there
exist nonzero rings R11 and R12 such that R ∼= R11×R12 as rings. It is
clear that dimR1j = 0 for each j ∈ {1, 2}. Since Max(R) is infinite by
assumption, it follows that either Max(R11) is infinite or Max(R12) is
infinite. Without loss of generality, we can assume that Max(R11) is
infinite. Again it follows from the proof of Proposition 3.4 that there

exist nonzero rings R
(1)
11 and R

(2)
11 such that R11

∼= R
(1)
11 ×R

(2)
11 as rings.

It is clear that dimR
(1)
11 = dimR

(2)
11 = 0 and R ∼= R

(1)
11 × R

(2)
11 × R12

as rings. The above argument can be repeated and it is clear that
there exist nonzero rings R1, R2, . . . , Rm+1 with dimRi = 0 for each
i ∈ {1, 2, . . . ,m + 1} and R ∼= R1 × R2 × · · · × Rm+1 as rings. Let us
denote the ring R1×R2×· · ·×Rm+1 by T . We are assuming that R is
not reduced. Hence, it follows that T is not reduced and so, Ri is not
reduced for at least one i ∈ {1, 2, . . . ,m+1}. Without loss of generality,
we can assume that R1 is not reduced. Let a ∈ R1\{0} be such that
a2 = 0. Let us denote the ideal R1a of R1 by I. Consider the collection
C = {I× I2×· · ·× Im+1|Ii ∈ I(Ri)∪{Ri} for each i ∈ {2, . . . ,m+ 1}}.
It is clear that C ⊆ I(T )∗ and C contains at least 2m elements. Let
A1, A2 be any distinct members of C. Note that A1 = I×I2×· · ·×Im+1

and A2 = I × J2 × · · · × Jm+1, where Ii, Ji ∈ I(Ri) ∪ {Ri} for each i ∈
{2, . . . ,m+1}. Observe that A1∩A2 = I×(I2∩J2)×· · ·×(Im+1∩Jm+1)
and it follows from I2 = (0) that A1A2 = (0)× I2J2 × · · · × Im+1Jm+1.
From I 6= (0), we obtain that A1 ∩ A2 6= A1A2. Hence, A1 and A2

are adjacent in g(T ). This shows that the subgraph of g(T ) induced
on C is a clique. As C contains at least 2m elements, we get that
ω(g(T )) ≥ 2m ≥ m+ 1. Therefore, ω(g(T )) ≥ m+ 1 and since R ∼= T
as rings, we obtain that ω(g(R)) ≥ m + 1. This is true for all m ≥ 1
and so, ω(g(R)) =∞. �

Corollary 3.11. Let R be a ring such that dimR = 0, R is not reduced,
and Max(R) is infinite. Then girth(g(R)) = 3.



58 VISWESWARAN AND VADHEL

Proof. We know from the proof of Theorem 3.10 that for each m ≥
1, there exists a clique of g(R) containing at least m + 1 elements.
Therefore, it follows that girth(g(R)) = 3. �

Let R be a ring such that dimR = 0, R is not reduced, and R has
at least two maximal ideals. In view of Corollary 3.11, in determining
girth(g(R)), we can assume that R is semiquasilocal.

Lemma 3.12. Let R be a semiquasilocal ring with dimR = 0. Sup-
pose that |Max(R)| = n. Then for each i ∈ {1, . . . , n}, there exists a
quasilocal ring (Ri, ni) with dimRi = 0 such that R ∼= R1× · · ·×Rn as
rings.

Proof. This is well-known. For the sake of completeness, we include a
proof of this lemma. There is nothing to prove if |Max(R)| = n = 1.
Hence, we can assume that n ≥ 2. Let {mi|i ∈ {1, 2, . . . , n}} denote the
set of all maximal ideals of R. For each i ∈ {1, 2, . . . , n}, let fi : R →
Rmi

denote the homomorphism of rings defined by fi(r) = r
1
. It follows

from dimR = 0 that
√
Kerfi = mi for each i ∈ {1, 2, . . . , n} and it

follows from (iii) ⇒ (i) of [2, Proposition 3.8] that ∩ni=1Kerfi = (0).
Let i, j ∈ {1, 2, . . . , n} with i 6= j. Since mi + mj = R, it follows
from [2, Proposition 1.16] that Kerfi + Kerfj = R. Now, it follows
from the Chinese remainder theorem [2, Proposition 1.10(ii) and (iii)]
that the mapping f : R → R

Kerf1
× R

Kerf2
× · · · × R

Kerfn
defined by

f(r) = (r + Kerf1, r + Kerf2, . . . , r + Kerfn) is an isomorphism of
rings. Let i ∈ {1, 2, . . . , n} and let us denote the ring R

Kerfi
by Ri. It is

clear that Ri is quasilocal with ni = mi

Kerfi
as its unique maximal ideal,

dimRi = 0, and R ∼= R1 ×R2 × · · · ×Rn as rings. �

Proposition 3.13. Let n ≥ 2 and let for each i ∈ {1, 2, . . . , n},
(Ri,mi) be a quasilocal ring with dimRi = 0. Let R = R1×R2 · · ·×Rn.
If g(R) does not contain any infinite clique, then R is Artinian.

Proof. We are assuming that g(R) does not contain any infinite clique.
Note that to prove R is Artinian, it is enough to show that Ri is
Artinian for each i ∈ {1, 2, . . . , n}. First, we verify that R1 is Artinian.
If m1 = (0), then it is clear that R1 is a field. Hence, we can assume
that m1 6= (0). Consider the mapping f : I(R1)

∗ → I(R)∗ defined
by f(I) = I × R2 × · · · × Rn. Observe that the mapping f is one-
one and I, J ∈ I(R1)

∗ are adjacent in g(R1) if and only if f(I) and
f(J) are adjacent in g(R). This implies that g(R) contains a subgraph
isomorphic to g(R1). From the assumption that g(R) does not contain
any infinite clique, it follows that g(R1) does not contain any infinite
clique. Hence, we obtain from Proposition 2.13 that R1 is Artinian.
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Similarly, it can be shown that Ri is Artinian for each i ∈ {2, . . . , n}
and so, it follows that R is Artinian. �

Let R be a ring such that R is semiquasilocal with |Max(R)| ≥ 2
and dimR = 0. If R is not Artinian, then it follows from Lemma
3.12 and Proposition 3.13 that g(R) contains an infinite clique and so,
girth(g(R)) = 3. Hence, in determining girth(g(R)), we can assume
that R is Artinian.

Lemma 3.14. Let T1, T2 be rings such that T1 is not reduced and T2
is not a field. Let T = T1 × T2. Then girth(g(T )) = 3.

Proof. Since T1 is not a reduced ring, it is possible to find t1 ∈ T1\{0}
such that t21 = 0. As T2 is not a field by assumption, there exists at
least one J ∈ I(T2)∗. Let us denote the ideal T1t1 by I. Observe that
I × J − I × T2 − I × (0)− I × J is a cycle of length 3 in g(T ) and so,
girth(g(T )) = 3. �

Corollary 3.15. Let R be an Artinian ring with |Max(R)| = n ≥ 3.
If R is not reduced, then girth(g(R)) = 3.

Proof. We know from [2, Theorem 8.7] that there exist Artinian local
rings (R1,m1), (R2,m2), (R3,m3), . . . , (Rn,mn) such that R ∼= R1×R2×
R3×· · ·×Rn as rings. Since R is not reduced by assumption, we obtain
that Ri is not reduced for at least one i ∈ {1, 2, 3, . . . , n}. Without loss
of generality, we can assume that R1 is not reduced. Let us denote the
ring R1×R2×R3×· · ·×Rn by T . Note that R ∼= T as rings. Since R1 is
not reduced and R2×R3×· · ·×Rn is not a field, it follows from Lemma
3.14 that girth(g(T )) = 3 and so, we obtain that girth(g(R)) = 3. �

Let R be an Artinian ring with |Max(R)| = 2 and R is not reduced.
In Theorem 3.16, we describe girth(g(R)) and moreover, we character-
ize rings R such that g(R) does not contain any cycle.

Theorem 3.16. Let R be an Artinian ring with |Max(R)| = 2. Sup-
pose that R is not reduced. Then girth(g(R)) ∈ {3,∞}.

Moreover, girth(g(R)) = ∞ if and only if R ∼= R1 × F as rings,
where F is a field and (R1,m1) is an Artinian ring which is not a field
satisfying one of the following conditions:

(i) (R1,m1) is a SPIR and if k is the least positive integer such that
mk

1 = (0), then k ∈ {2, 3}.
(ii) m1 is not principal and any I ∈ I(R1)

∗ with I 6= m1 is a minimal
ideal of R1.

Proof. We know from [2, Theorem 8.7] that there exist Artinian local
rings (R1,m1) and (R2,m2) such that R ∼= R1 × R2 as rings. Since R
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is not reduced by assumption, it follows that Ri is not reduced for at
least one i ∈ {1, 2}. Without loss of generality, we can assume that R1

is not reduced. Let us denote the ring R1 ×R2 by T . We consider the
following cases.
Case(1): R2 is not reduced.

In such a case, we obtain from Lemma 3.14 that girth(g(T )) = 3
and since R ∼= T as rings, we obtain that girth(g(R)) = 3.
Case (2): R2 is reduced.

Note that m2 = (0) and so, R2 is a field. Let us denote R2 by
F . Now, T = R1 × F . Since F and (0) are the only ideals of F ,
F ∩ (0) = (0) = F (0), F ∩ F = F = FF , we obtain that any edge of
g(T ) is of the form I1×J1−I2×J2 with I1−I2 is an edge of g(R1). Thus
g(T ) contains a cycle if and only if g(R1) contains a cycle. If g(R1)
contains a cycle, then we know from (i)⇒ (ii) of Proposition 2.15 that
girth(g(R1)) = 3. Thus if g(T ) contains a cycle, then girth(g(T )) = 3.
Hence, girth(g(R)) = 3.

It is clear from the above discussion that girth(g(R)) ∈ {3,∞}.
Note that girth(g(R)) = ∞ if and only if R ∼= R1 × F as rings,
where F is a field and (R1,m1) is a nonreduced Artinian local ring
with girth(g(R1)) =∞. It follows from Corollary 2.17 and (ii)⇔ (iii)
of Theorem 2.18 that girth(g(R1)) = ∞ if and only if the Artinian
local ring (R1,m1) satisfies one of the conditions (i) , (ii) stated in the
statement of Theorem 3.16. �

We mention some examples in Example 3.17 to illustrate Theorem
3.16.

Example 3.17. (i) Let S = R× F , where R is as in Example 2.19(i)
and F is a field. Then girth(g(S)) =∞.
(ii) Let S = R×F , where R is as in Example 2.19(ii) and F is a field.
Then girth(g(S)) = 3.

Proof. (i) Let T,m, I be as in Example 2.19(i). It is noted in Example
2.19(i) that (R, m

I
) is a local Artinian ring with girth(g(R)) = ∞.

Observe that S is Artinian, |Max(S)| = 2, and Max(S) = {m
I
×F,R×

(0)}. It is noted in the proof of Theorem 3.16 that g(S) contains a
cycle if and only if g(R) contains a cycle. From girth(g(R)) = ∞, it
follows that girth(g(S)) =∞.
(ii) Let T,m, J be as in Example 2.19(ii). It is observed in Example
2.19(ii) that (R, m

J
) is a local Artinian ring with girth(g(R)) = 3. Note

that S is Artinian, |Max(S)| = 2, and Max(S) = {m
J
× F,R × (0)}.

From girth(g(R)) = 3, we obtain that girth(g(S)) = 3. �
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