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Abstract. In this paper for a given set of real or complex interval numbers
σ satisfying special conditions, we find an interval nonnegative matrix C
such that for each point set δ of given interval spectrum σ, there exists
a point matrix A of C such that δ is its spectrum. We also study some
conditions for the solution existence of the problem.
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1 Introduction

An interval matrix is a matrix whose elements are interval numbers. In-
terval matrices were used by mathematicians in the late twentieth century
and in the present century.

In 1965, Zadeh presented fuzzy logic for the first time and introduced
interval logic [11]. In 1993 Rohn found the inverse of interval matrices [9].
The eigenvalue problem of real and symmetric interval matrices studied by
Hladik and Daney and they found some bounds for interval eigenvalues of
these interval matrices [4]. In 2006, again Rhon obtained some results for
the spectral radius of irreducible nonnegative interval matrix and found
the Perron eigenvector of them [10]. In 2011, Hladik et al. by iterative
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filtering method found the approximate eigenvalues of interval matrices
[2]. In the recent paper [3], a cheap and tight formula for bounding real
and imaginary parts of eigenvalues of real or complex interval matrices
has been presented by Hladik. His method generalized and improved the
results presented by Rohn [8] and Hertz [1]. Although finding the prescribed
interval eigenvalues of interval matrices has some problems, we try to study
the inverse eigenvalue problem.

The summation, subtraction, multiplication and division of two interval
numbers b = [b, b] and a = [a, a] are respectively defined as:

• a + b = [a+ b, a+ b];

• a− b = [a− b, a− b];

• a · b = [min{a · b, a · b, a · b, a · b},max{a · b, a · b, a · b, a · b}];

• a
b = a · b′ , b

′
= [1

b
, 1
b ] and 0 /∈ b;

• a2 =


[a2, a2], if 0 ≤ a ≤ a,[
a2, a2

]
, if a ≤ a ≤ 0,[

0,max{[a2, a2}
]
, if a ≤ 0 ≤ a.

Definition 1. Let A and A be n× n real matrices. The following set

AI = [A,A] = {A : A ≤ A ≤ A},

is called an n× n real interval matrix. The midpoint and the radius of AI

are denoted respectively by

Ac =
A+A

2
, A∆ =

A−A
2

.

If all interval entries of a real interval matrix are nonnegative, then AI is
called nonnegative interval matrix. The set of all real interval matrices
and the set of all nonnegative interval matrices are denoted by IRn×n and
NIRn×n, respectively.

Definition 2. Let AI be an interval square matrix. Then the set of eigen-
values of AI is defined as follows

Λ(AI) = {λ ∈ R;Ax = λx, x 6= 0, A ∈ AI}.

The eigenvalue of nonnegative interval matrix AI is called Perron interval
eigenvalue of AI if it is nonnegative and greater than or equal to all absolute
value of eigenvalues of AI and denoted by λ1 = [λ1, λ1], i.e.,

[λ1, λ1] ≥ |[λi, λi]|, i = 2, 3, . . . , n,
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where
[
λi, λi] = [min{

∣∣λi∣∣ , ∣∣λi∣∣},max{
∣∣λi∣∣ , ∣∣λi∣∣}] .

The nonnegative inverse eigenvalue problem (NIEP) asks for necessary
and sufficient conditions on a list σ = (λ1, λ2, . . . , λn) of real or complex
numbers in order that it be the spectrum of a nonnegative matrix A, and
in this case we will say that σ is realizable and that it is realization of σ.

Some necessary conditions on the list of real number σ = (λ1, λ2, . . . , λn)
to be the spectrum of a nonnegative matrix are listed below.
1. The Perron eigenvalue max{|λi|;λi ∈ σ} belongs to σ (Perron-Frobenius
theorem);

2. sk =

n∑
i=1

λki ≥ 0;

3. smk ≤ nm−1skm for k,m = 1, 2, . . . (JLL (for Johnson, Lowey and Lon-
don) inequality) [5, 6].

In this paper by using some theorems of [7], for a given set of interval
numbers σ with special conditions, we find interval nonnegative matrices
CI such that for every point set σ1 of interval set of eigenvalues (for each
interval one point), there exists a point nonnegative matrix such that this
set is its spectrum. The necessary and sufficient conditions for the solutions
existence of the problem will be studied.

Theorem 1. [7] Let B be an m×m nonnegative matrix, M1 = {µ1, µ2, . . . ,
µm}, be its eigenvalues and µ1 be the Perron eigenvalue of B. Also assume
that A is an n× n nonnegative matrix in following form

A =

(
A1 a
bT µ1

)
,

where A1 is an (n − 1) × (n − 1) matrix, a and b are arbitrary vectors
in Rn−1 and M2 = {λ1, λ2, . . . , λm} is the set of eigenvalues of A. Then
there exists an (m + n − 1) × (m + n − 1) nonnegative matrix such that
M = {µ2, . . . , µm, λ1, λ2, . . . , λm} is its eigenvalues.

The above theorem presents a recursive method for solving NIEP. In
this paper we use this theorem and some of the results presented in the
paper [7] in the interval form and try to construct a similar method for
solving the nonnegative interval inverse eigenvalue problem matrices which
is briefly denoted by NIIEP. Also we study some conditions for realization
of the problem.

Some necessary conditions for NIIEP on the list of complex interval
number σ =

(
[λ1, λ1], [λ2, λ2], . . . , [λn, λn]

)
to be the spectrum of a nonneg-

ative interval matrix are listed below.
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1. The Perron eigenvalue max{|[λi, λi]|; [λi, λi] ∈ σ} belongs to σ (Perron-
Frobenius theorem in interval case);
2. The list σ is closed under complex conjugation;

3. sk =
n∑
i=1

∣∣[λi, λi]∣∣k ≥ 0.

2 The case n = 2

In this section for a given interval set of eigenvalues with two real elements
(both elements must necessarily be real), we find a nonnegative interval
matrix, such that the given set is its spectrum.

Theorem 2. Assume that [λ1, λ1] and [λ2, λ2] are two interval real numbers

and [λ1, λ1] ≥ 0 (this means both λ1 and λ1 are nonnegative). Also assume

that σ = {[λ1, λ1], |[λ2, λ2]} and [λ1, λ1] ≥ |[λ2, λ2]|. Then there exists the
nonnegative interval matrix CI , such that for every piont eigenvalue σ1 of
σ there exists a nonnegative point matrix of CI such that σ1 is its spectrum.

Proof. If [λ2, λ2] ≥ 0, then the nonnegative interval matrix

CI = diag
(
[λ1, λ1], [λ2, λ2]

)
,

is the solution of problem. Otherwise, the following nonngative real interval
matrix

CI =

(
0 −[λ1, λ1][λ2, λ2]

1 [λ1, λ1] + [λ2, λ2]

)
, (1)

has interval eigenvalues [λ1, λ1] and [λ2, λ2], where the number 0 or 1 are
point interval numbers as 0 = [0, 0] and 1 = [1, 1].

3 The case n = 3

In this section for a given interval set of eigenvalues with three real or
complex elements that satisfies necessary conditions of NIIEP, we find a 3×3
nonnegative interval matrix, such that for every given set of eigenvalues of
this interval set we can find a nonnegative matrix from nonnegative interval
matrix in which this set is its spectrum.
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Theorem 3. Let σ =
(
[λ1, λ1], [λ2, λ2], [λ3, λ3]

)
be a set of real and complex

interval numbers and

p = [λ1, λ1][λ2, λ2][λ3, λ3],

α1 = [λ1, λ1][λ2, λ2] + [λ1, λ1][λ3, λ3] + [λ2, λ2][λ3, λ3],

α2 = [λ1, λ1]− [λ2, λ2]− [λ3, λ3]−
∣∣[λ2, λ2]

∣∣2 − 1,

α3 = [λ1, λ1]−
∣∣[λ2, λ2]

∣∣2 ,
α4 = [λ2, λ2] + [λ3, λ3] +

∣∣[λ2, λ2]
∣∣2 .

Furthermore if σ satisfies the following conditions:
(1) [λ1, λ1] + [λ2, λ2] + [λ3, λ3] ≥ 0,
(2) σ = σ,
(3) λ1, λ1 ∈ R, [λ1, λ1] ≥

∣∣[λi, λi]∣∣ , i = 2, 3,

(4) if ([λ2, λ2], [λ3, λ3] /∈ IR, α1 > 0)⇒ α2, α3, α4 ≥ 0,
then there exists a nonnegative matrix CI , such that for every σ1 of σ there
exists a nonnegative matrix of CI such that σ1 is its spectrum.

Proof. At first, we assume that all elements of σ are real interval numbers.
In accordance with the above conditions we consider the following cases:

(a) If [λ2, λ2], [λ3, λ3] ≥ 0, then the nonnegative interval matrix CI =

diag
(
[λ1, λ1], [λ2, λ2], [λ3, λ3]

)
is a desired matrix.

(b) If [λ2, λ2], [λ3, λ3] < 0, since two nonnegative interval matrices AI

and BI with spectrum σ1 = {[λ1, λ1], [λ2, λ2]}, σ2 = {[λ1, λ1] +

[λ2, λ2], [λ3, λ3]} in the following form:

AI =

(
0 −[λ1, λ1][λ2, λ2]

1 [λ1, λ1] + [λ2, λ2]

)
,

BI =

(
0 −

(
[λ1, λ1] + [λ2, λ2]

)
[λ3, λ3]

1 [λ1, λ1] + [λ2, λ2] + [λ3, λ3]

)
,

respectively, satisfy the conditions of Theorem 1, in its interval form,
then it is easy to verify that the vector

s =

(
− [λ3,λ3]√

1+|[λ3,λ3]|2
, 1√

1+|[λ3,λ3]|2
)T

,

is the normalized eigenvector associated to Perron interval eigen-
value [λ1, λ1] + [λ2, λ2], of nonnegative interval matrix BI , where
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√
[λ1, λ1] = [

√
λ1,
√
λ1]. Then by Theorem 1 the nonnegative in-

terval matrix

CI =


0

[λ1,λ1][λ2,λ2][λ3,λ3]√
1+|[λ3,λ3]|2

− [λ1,λ1][λ2,λ2]√
1+|[λ3,λ3]|2

− [λ3,λ3]√
1+|[λ3,λ3]|2

0 −
(

[λ1, λ1] + [λ2, λ2]
)

[λ3, λ3]

1√
1+|[λ3,λ3]|2

1 [λ1, λ1] + [λ2, λ2] + [λ3, λ3]

 ,

is a solution of the problem.

(c) If [λ2, λ2] < 0 and [λ3, λ3] ≥ 0, then the following nonnegative interval
matrix

CI =

(
AI a

bT [λ3, λ3]

)
are the the solution for the problem, where AI is the matrix (1) and
a and bT is interval zero vector of dimension 2× 1.

Now let [λ2, λ2] and [λ3, λ3] be a conjugate complex pair. One of the
following cases will be happened.

(d) If α1 ≤ 0, then the nonnegative interval matrix

CI =

 0 p 0
0 0 1

1 −α1 [λ1, λ1] + [λ2, λ2] + [λ3, λ3]

 .

is a solution of our problem.

(e) If α1 > 0, then by condition (4), we must have α2, α3, α4 ≥ 0. So the
nonnegative interval matrix

CI =

 α3 α2|[λ2, λ2]|2 1
1 α4 0
0 p 0

 ,

is a solution of our problem.

Remark 1. We can continue this method for n = 4, 5 and state some
theorems similar to the theorem of [7].

Example 1. Let σ = {[4, 6], [−4,−4]}. Then the following interval matrix
has spectrum σ,

CI =

(
0 −[λ1, λ1][λ2, λ2]

1 [λ1, λ1] + [λ2, λ2]

)
=

(
0 [16, 24]
1 [0, 2]

)
.
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Example 2. Consider σ = {[10, 11], [−5,−3]± [2, 4]i}. Whereas

p = [λ1, λ1][λ2, λ2][λ3, λ3] = [130, 451] > 0

α1 = [λ1, λ1][λ2, λ2] + [λ1, λ1][λ3, λ3] + [λ2, λ2][λ3, λ3]

= 2× [−55,−30] + [13, 41] = [−97,−19] < 0,

then by the case (d) of Theorem 3 the following interval matrix is solution
of problem and has spectrum σ:

CI =

 0 p 0
0 0 1

1 −α1 [λ1, λ1] + [λ2, λ2] + [λ3, λ3]


=

 0 [130, 451] 0
0 0 1
1 [19, 97] [0, 5]

 .
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