تعداد نشریات | 22 |

تعداد شمارهها | 312 |

تعداد مقالات | 2,590 |

تعداد مشاهده مقاله | 2,893,089 |

تعداد دریافت فایل اصل مقاله | 2,122,675 |

## Allometric equations for determining volume and biomass of Acer monspessulanum L. subsp. cinerascens multi-stemmed trees | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Caspian Journal of Environmental Sciences | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

مقالات آماده انتشار، اصلاح شده برای چاپ ، انتشار آنلاین از تاریخ 11 خرداد 1397 اصل مقاله (506 K) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

نوع مقاله: Research Paper | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

شناسه دیجیتال (DOI): 10.22124/cjes.2018.2786 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

نویسندگان | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

A Afroonde^{1}؛ B Kiani^{1}؛ P Attarod^{2}
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

^{1}Yazd University | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

^{2}Tehran University | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

چکیده | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Due to the importance of Acer monspessulanum in Iranian mountain forests, a study was carried out to reliably estimate its woody biomass and growing volume via allometric equations. Four transects, five trees in each were chosen randomly. The characteristics of standing trees including: diameter at root collar, height, number of stems and crown width were measured, then trees were finally cut down. Trunk and branches were separated and weighed. Some disks were taken and moved to the laboratory to determine the dry/fresh weight ratio and wood specific gravity and subsequently to calculate the dry weight of trunk, branch as well as aboveground biomass. Linear regression analysis was conducted to create allometric equations. Results showed that there was a strong and significant correlation between volume/biomass of Acer monspessulanum and quantitative characteristics of standing trees. The most robust predictors of volume and aboveground biomass were found to be crown width and crown area (R^{2 }= 0.83) followed by equivalent diameter at root collar (R^{2 }= 0.81). The normalized root-mean-square error amounts were found to be under 20% for most models especially for predicting biomass of branches. Tree height combined with equivalent diameter at root collar (EDRC) explained 87% of the variations in volume and biomass, creating precise models. It is concluded that crown diameter and EDRC can predict biomass and the volume of A. monspessulanum as a multi-stemmed tree with high accuracy and precision. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

کلیدواژهها | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Allometric equations؛ Biomass؛ Modeling؛ Multi-stemmed؛ Prediction | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

اصل مقاله | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Due to the importance of
Volume and biomass estimation of forest trees is very important in forest resource planning. Calculating the volume in standing trees is more difficult than in fallen trees with lower accuracy. Therefore, we have to find a reliable method to estimate standing volume. Several methods have been used by different researchers to estimate the volume of forest trees. However the accuracy of these methods highly depends on the type of forest (Pourshakoori & Hassanzad 2007). Calculating the volume of multi-stemmed trees using simple formulas is nearly impossible since most of the stems have small diameter with collections of about ten stems forking from the ground. Therefore, introducing the allometric equations to estimate their volume would be helpful. The most accurate method to estimate biomass of trees is a method in which the tree is entirely cut and divided to separate organs, dried and weighted (Basuki
This research was carried out in Baghe-Shadi protected forest is managed by Iranian Institute of Environmental Protection (11665 ha, 29º 42' 50'' - 29º 50' 41'' N, 54º 05' 35'' - 54 º 14’ 35'' E, 1840-2664 m a.s.l.). The forest is located in South Yazd Province (240 km south of Yazd city) and belongs to Iran-Touran biogeoclimatic zone. The main forest species were
Habitat of
(1) where d are stem diameters (d ≥ 2.5 cm) and EDRC is equivalent tree diameter at root collar (Junior _{n}et al. 2014). The trees were ultimately harvested and then trunks and branches were separated. Noteworthy, leaves biomass was not calculated as trees were cut during leafless period (we could not get permission to cut trees in growth season, as the study site was located in a protected area). All trunks and branches were weighted separately for each tree (by digital balance with an accuracy of ± 0.05 g). Discs were taken from trees at root collar and DBH points to determine the specific gravity of wood.
Dry weight of samples was measured by a digital scale (with an accuracy of ± 0.05 g) after keeping in oven (80 ºC for 48 h). The coefficient derived from the ratio of dry weight to fresh weight of the samples was considered as an expansion factor, employing for measuring dry weight of all trunks and branches. The water displacement method was applied to obtain trunk volume. This method provides a better estimation of volume for species that have big hollow sections (Cornelissen
Where
The validity of the models was evaluated by illustrating normality graphs and error value distribution. The normalized root means squared error (NRMSE) and coefficient of determination (R The best models with the highest R In the case of logarithmic transformation, a bias Correction factor (SE
Correlation analysis showed that there was a linear relation between all dependent and independent variables. With respect to the multiplicity of graphs, only two graphs regarding crown area-aboveground biomass and EDRC-tree volume were illustrated (Fig. 1). The results of modeling for estimating dependent variables (trunk dry weight, branch dry weight, tree and trunk volume) against EDRC as independent variable showed that EDRC is suitable estimator for aboveground biomass (R Results showed that the least NRMSE was related to branch dry weight (10.93), explaining this independent variable provided the most precise model. Results of modeling for estimating the volume and biomass of Tree height as independent variable was a proper predictor for tree volume (R The most precise model was found to be appropriate for tree volume estimation (Table 3). Obviously models for height were less strong than crown width and EDRC. It seems that a combination between tree height and other specifications could improve prediction capability.
* D.W. = Dry Weight V= Volume
As shown in Table 4, stem number was a proper estimator for tree volume and biomass. Model for trunk volume had the most accuracy and lowest NRMSE value (13.59). Generally, it seems that the number of stems could estimate 70% of variations in aboveground biomass and volume of This variable also estimated branch dry weight accurately (R
All independent variables in this paper had a significant correlation with aboveground biomass and volume, providing high accurate models. In most cases, logarithmically converted data had better fit than untransformed ones especially in data sets that include outlying observations (Feng Parsapour
showed that EDRC was a suitable predictor for the biomass of Top height of trees could predict 70% of variations in volume and biomass. Hierro In the present study, we found that EDRC (for multi-stemmed trees regarded as DBH) in combination with tree height could predict 87% of variations in aboveground biomass and volume. However multivariate models were not suitable in prediction capability, whereas provided more precise results than simple models. According to the study of Ebuy Ketterings Multi-stemmed trees form an important component of the woody vegetation in forest ecosystems (Matula | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

مراجع | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Andrei, D 2014, Prequalification criteria for pavement inspectors, Civil Engineering Department, California State Polytechnic University, 11 p.
Bakhtiarvand Bakhtiari, S 2011, Assessment of Carbon estimation methods for conifers and broadleaves trees in Mobarake Steel plantation. MSc. Dissertation, Faculty of Natural Resources and Earth Science. Shahrekord University, Shahrekord, Iran, 112 p.
Baskerville, GL 1972, Use of logarithmic regression in the estimation of plant biomass. Canadian Journal Of Forest Research, 2: 49-53.
Basuki, TM, Van Laake, PE, Skidmore, AK & Hussin, YA 2009, Allometric equations for estimation the above-ground biomass in tropical lowland Dipterocarp forests. Forest Ecology and Management, 257: 1684-1694.
Brown, SL, Schroeder, P & Kern, JS 1999, Spatial distribution of biomass in forests of the eastern USA. Forest Ecology and Management, 123: 81-90.
Cai, S, Kang, X & Zhang, L 2013, Allometric models for aboveground biomass of ten tree species in Northeast China. Annals of Forest Research, 56: 105-122.
Cienciala, E, Centeio, A, Blazek, P, Soares, M & Russ, D 2013, Estimation of stem and tree level biomass models for Prosopis juliflora/ pallida applicable to multi-stemmed tree species. Trees, 27: 1061-1070.
Cole, Th, G & Ewel, JJ 2006, Allometric equations for four valuable tropical tree species. Forest Ecology and Management, 229: 351–360.
Conti, G, Enrico, L, Casanoves, F & Diaz, S 2013, Shrub biomass estimation in the semiarid Chaco forest: a contribution to the quantification of an underrated carbon stock. Annals of Forest Science, 70: 515–524.
Cornelissen, JHC, Lavorel, S, Garnier, ES, Bachmann, N, Gurvich, DEC, Reich, PB, Steege, H, Morgan, HD, van der Heijden, MGA, Pausas, JG & Poorter, H 2003, A handbook of protocols for standardization and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51: 335–380.
Ebuy, J, Lokombe, JP, Ponette, Q, Snowa, D & Picard, N 2011, Allometric equation for predicting aboveground biomass of three tree species . Journal of Tropival Forest Science, 23: 125-132.
Feng, Ch, Wang, H, Lu, N, Chen, T, He, H, Lu, Y & Tu, X 2014, Log-transformation and its implications for data analysis. Shanghai Archives of Psychiatry, 26: 105-109.
Fu, W & Wu, Y 2011, Estimation of aboveground biomass of different mangrove trees based on crown diameter and tree height. Procedia Environmental Sciences, 10: 2189-2194.
Goodman, RC, Philips, OL & Baker, TR 2014, The importance of crown dimensions to improve tropical tree biomass estimates. Ecological Applications, 24: 680–698.
Hierro, J, Branch, LC, Villarreal, D & Clark, KL 2000, Predictive Equation for Biomass and Fuel Characteristics of Argentine shrubs, Journal of Range management, 53: 617-621.
JICA, Japanese International Cooperation Agency (2005) Manual of biomass survey and analysis. Forestry Research and Development Agency, Japan, 23 p.
Junior, LR, Engel, VL, Parrotta JA, Melo, AC & Re, DS 2014, Allometric equations for estimating tree biomass in restored mixed-species Atlantic forest stands. Biota Neotropica, 14: 1-9.
Ketterings, MQ, Coe, R, Noordwijk, VM, Ambagua, Y & Palm, A 2001, Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecology and Management, 146: 199-209.
Komiyama, A, Ong, JE & Poungparn, S 2008, Allometry, biomass, and productivity of mangrove forests: A review. Aquatic Botany, 89: 128–137.
Kuyah, Sh, Muthuri, C, Jamnadass, R, Mwangi, P, Neufeldt, H & Dietz, J 2012, Crown area allometries for estimation of aboveground tree biomass in agricultural landscapes of western Kenya. Agroforestry Systems, 86: 267–277.
Litton, CM 2008, Allometric Models for predicting aboveground biomass in two widespread woody plants in Hawaii. Biotropica, 40: 313–320.
Losi, CJ, Siccama, TG, Juan, RC & Morales, E 2003, Analysis of alternative methods for estimating carbon stock in young tropical plantations. Forest Ecology and Management, 184: 355-368.
Matula, R, Damborská, L, Nečasová, M, Geršl, M & Šrámek, M 2015, Measuring biomass and carbon stock in resprouting woody plants. PLOS ONE, 10: 1-14.
Miller, R 2016, Developing an algorithm to predict single-tree biomass weight from stem diameter measurements in young hybrid poplar energy plantations in Michigan. Michigan State University. Forest Biomass Innovation Center, Research report, 3p.
Mitsopoulos, ID & Dimitrakopoulos, AP 2007, Allometric equations for crown fuel biomass of Aleppo pine ( Pinus halepensis Mill.) in Greece. International Journal of Wildland Fire, 16: 642–647.
Parsapour, MK, Sohrabi, H, Soltani, A & Iranmanesh, Y 2013, Allometric relation for estimating biomass of four species of poplar in Chaharmahal va Bakhtiari province. Iranian Journal of Forest and Poplar Research, 21: 571-528.
Pourshakoori, F & Hassanzad, A 2007, The most appropriate method for estimating forest volume in Guilan Province. Iranian Journal of Pajouhesh va Sazandegi 77:24-31.
Panahi, P, Pourhashemi, M & Hasaninejad, M 2011, Estimation of leaf biomass and leaf carbon sequestration of Pistacia atlantica in National Botanical Garden of Iran. Iranian Journal of Forest, 3: 1-12.
Singh, AK, Tripathy, R & Chopra, UK 2008, Evaluation of CERES-Wheat and CropSyst models for water-nitrogen interactions in wheat crop. Agricultural Water Manageement, 95: 776–786.
Sohrabi, H & Shirvani, A 2012, Allometric equations for estimating standing biomass of Atlantic Pistachio ( Pistacia atlantica var. mutica) in Khojir National Park. Iranian Journal of Forest, 4: 55-64 (In Persian).
Vahedi, AA & Mettagi, A 2013, Amount of carbon sequestration distribution associated with oak tree’s ( Quercus castaneifolia C.A. May) bole in relation to physiographical units of Hrcanian natural forests of Iran. Iranian Journal of Forest and Poplar Research 4: 716-728 (In Persian).
Williams, TM & Gresham, CA 2006, Biomass accumulation in rapidly growing loblolly pine and sweet gum. Biomass and Bioenerg. 30: 370- 377.
Zewdie, M, Olsson, M & Verwijst, T 2009, Above-ground biomass production and allometric relations of Eucalyptus globulus Labill coppice plantations along a chronosequence in the central highlands of Ethiopia. Biomass and Bioenerg. 33: 423-428.
Zhou, X, Brandle, JR, Schoeneberger, MM & Awada, T 2007, Developing above-ground woody biomass equations for open - grown, multiple - stemmed tree species: Shelterbelt-grown Russian-olive, Ecological Modelling, 202: 311-323.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

آمار تعداد مشاهده مقاله: 13 تعداد دریافت فایل اصل مقاله: 14 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||