| تعداد نشریات | 32 | 
| تعداد شمارهها | 814 | 
| تعداد مقالات | 7,880 | 
| تعداد مشاهده مقاله | 36,687,619 | 
| تعداد دریافت فایل اصل مقاله | 8,306,153 | 
$G$-Weights and $p$-Local Rank | ||
| Journal of Algebra and Related Topics | ||
| مقاله 1، دوره 5، شماره 2، اسفند 2017، صفحه 1-12 اصل مقاله (307.6 K) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22124/jart.2017.2711 | ||
| نویسنده | ||
| P. Manuel Dominguez Wade* | ||
| Department of Mathematics, Matanzas University, Matanzas, Cuba | ||
| چکیده | ||
| Let $k$ be field of characteristic $p$, and let $G$ be any finite group with splitting field $k$. Assume that $B$ is a $p$-block of $G$. In this paper, we introduce the notion of radical $B$-chain $C_{B}$, and we show that the $p$-local rank of $B$ is equals the length of $C_{B}$. Moreover, we prove that the vertex of a simple $kG$-module $S$ is radical if and only if it has the same vertex of the unique direct summand, up to isomorphism, of the Sylow permutation module whose radical quotient is isomorphic to $S$. Finally, we prove the vertices of certain direct summands of the Sylow permutation module are bounds for the vertices of simple $kG$-modules.  | ||
| کلیدواژهها | ||
| Radical vertex؛ $G$-weight؛ $p$-local rank | ||
| 
			 آمار تعداد مشاهده مقاله: 1,112 تعداد دریافت فایل اصل مقاله: 1,255 			 | 
		||