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A NOTE ON A GRAPH ASSOCIATED TO A
COMMUTATIVE RING

S. VISWESWARAN∗ AND J. PAREJIYA

Abstract. The rings considered in this article are commutative
with identity. This article is motivated by the work on comaximal
graphs of rings. In this article, with any ring R, we associate an
undirected graph denoted by G(R), whose vertex set is the set
of all elements of R and distinct vertices x, y are joined by an
edge in G(R) if and only if Rx ∩ Ry = Rxy. In Section 2 of
this article, we classify rings R such that G(R) is complete and
we also consider the problem of determining rings R such that
χ(G(R)) = ω(G(R)) < ∞. In Section 3 of this article, we classify
rings R such that G(R) is planar.

1. Introduction

The rings considered in this article are commutative with identity. In-
spired by the research work of I. Beck in [5], several algebraists as-
sociated a graph with certain subsets of a ring and investigated the
interplay between the ring-theoretic properties of a ring and the graph-
theoretic properties of the graph associated with it (See for example,
[1, 2, 6, 7, 10, 12, 13, 14]). The present article is motivated by the
research work of P.K. Sharma and S.M. Bhatwadekar in [14]. Let R
be a ring. The authors of [14] introduced an undirected graph on R,
whose vertex set is the set of all elements of R and distinct vertices a, b
are joined by an edge in this graph if and only if Ra+ Rb = R and in
[14], they investigated mainly on the coloring of the graph introduced
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by them. The work presented in [14] inspired a lot of research work in
this area. In [12], H.R. Maimani, M. Salimi, A. Sattari, and S. Yassemi
called the graph introduced in [14] on the set of all elements of R as
the comaximal graph of the ring R and used the notation Γ(R) for this
graph. The authors of [12] investigated several other properties of Γ(R)
and in addition, they explored some subgraphs of Γ(R). For a ring R,
we denote the set of all units of R by U(R) and the set of all nonunits of
R by NU(R), and the Jacobson radical of R by J(R). The subgraphs
of Γ(R) investigated in [12] are Γ1(R),Γ2(R), and Γ2(R)\J(R), where
Γ1(R) is the subgraph induced on U(R), Γ2(R) is the subgraph induced
on NU(R) , and Γ2(R)\J(R) is the subgraph induced on NU(R)\J(R).

Let R be a ring. In this article, we introduce a graph structure on
R, denoted by G(R), is an undirected graph whose vertex set is the set
of all elements of R and distinct vertices x, y are joined by an edge in
G(R) if and only if Rx∩Ry = Rxy. The aim of this article is to study
the interplay between the graph-theoretic properties of G(R) and the
ring-theoretic properties of R.

It is useful to recall the following definitions from graph theory before
we describe the results that are proved in Section 2 of this article.
The graphs considered in this article are simple and undirected. Let
G = (V,E) be a graph. Let a, b ∈ V, a 6= b. Recall that the distance
between a and b, denoted by d(a, b) is defined as the length of a shortest
path in G between a and b if there exists such a path in G; otherwise
we define d(a, b) = ∞. We define d(a, a) = 0. The diameter of G,
denoted by diam(G) is defined as diam(G) = sup{d(a, b)|a, b ∈ V }
[4]. A graph G = (V,E) is said to be connected if for any distinct
a, b ∈ V , there exists a path in G between a and b [4]. A simple graph
G = (V,E) is said to be complete if every pair of distinct vertices of G
are adjacent in G [4, Definition 1.1.11]. For a graph G, we denote the
set of all vertices of G and the set of all edges of G by V (G) and E(G)
respectively. A subgraph H of G is said to be a spanning subgraph of
G if V (G) = V (H).

Let G = (V,E) be a graph. Recall from [4, Definition 1.2.2] that
a clique of G is a complete subgraph of G. The clique number of G,
denoted by ω(G) is defined as the largest integer n ≥ 1 such that G
contains a clique on n vertices [4, page 185]. We set ω(G) = ∞, if G
contains a clique on n vertices for all n ≥ 1. Recall from [4, page 129]
that a vertex coloring of G is a map f : V → S, where S is a set of
distinct colors. A vertex coloring f : V → S is said to be proper, if
adjacent vertices of G receive different colors of S; that is, if a and b
are adjacent vertices of G, then f(a) 6= f(b). The chromatic number
of G, denoted by χ(G), is the minimum number of colors needed for a



ON A GRAPH ASSOCIATED TO A COMMUTATIVE RING 63

proper vertex coloring of G [4, Definition 7.1.2]. It is well-known that
for any graph G, ω(G) ≤ χ(G).

We next recall some definitions and results from commutative ring
theory that are used in this article. Let R be a ring. We denote
the nilradical of R using the notation nil(R). A ring R is said to be
reduced if nil(R) = (0). Recall from [9, Exercise 16, page 111] that
a ring R is said to be von Neumann regular if for each a ∈ R, there
exists b ∈ R such that a = a2b. A principal ideal ring R is said to be
a special principal ideal ring (SPIR) if R has a unique prime ideal. If
m is the unique prime ideal of a special principal ideal ring R, then m
is nilpotent. If m is the only prime ideal of a SPIR R, then we denote
it using the notation (R,m) is a SPIR. Suppose that (R,m) is a SPIR
which is not a field. Let n ≥ 2 be least with the property that mn = (0).
Then it follows from the proof of (iii)⇒ (i) of [3, Proposition 8.8] that
{mi|i ∈ {1, . . . , n − 1}} is the set of all nonzero proper ideals of R. A
ring R which has a unique maximal ideal is referred to as a local ring.
We denote the cardinality of a set A using the notation |A|. If A and
B are sets such that A is properly contained in B, then we denote it
using the notation A ⊂ B.

We now give a brief summary of the results that are proved in Section
2 of this article. Let R be a ring. It is observed in Lemma 2.1 that
Γ(R) is a spanning subgraph of G(R). It is noted in Lemma 2.2 that
G(R) is connected and diam(G(R)) ≤ 2. In Section 2, we first focus
on classifying rings R such that G(R) is complete. Let R be a reduced
ring. It is shown in Proposition 2.4 that G(R) is complete if and only if
R is von Neumann regular. Let R be a ring such that R is not reduced.
It is proved in Theorem 2.9 that G(R) is complete if and only if (R,m)
is local with m2 = (0) and |R

m
| = 2. It was proved in [14, Proposition

2.2] that for a ring R, ω(Γ(R)) <∞ if and only if R is finite. For any
finite ring R, it was shown in the moreover part of [14, Theorem 2.3]
that χ(Γ(R)) = ω(Γ(R)) = t + l, where t is the number of maximal
ideals of R and l is the number of units of R. Since Γ(R) is a spanning
subgraph of G(R), it follows that ω(G(R)) < ∞ implies that R is a
finite ring. Motivated by [14, Proposition 2.2 and Theorem 2.3], in
Section 2 of this article, we try to classify finite rings R in order that
χ(G(R)) = ω(G(R)). Let R be a finite reduced ring. Then it is shown
in Proposition 2.10 that χ(G(R)) = ω(G(R)) = |R|. Let R be a finite
ring which is not reduced. In Section 2 of this article, we try to classify
such rings R in order that χ(G(R)) = ω(G(R)). We provide some
sufficient conditions on the ring R in order that χ(G(R)) = ω(G(R)).
Let (R,m) be a finite local ring such that m 6= (0) but m2 = (0). It is
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proved in Proposition 2.12 that χ(G(R)) = ω(G(R)) = |U(R)|+ k+ 1,
where k is the number of minimal ideals of R. In Example 2.14, it is
verified that the ring R provided by D.D. Anderson and M. Naseer in
[1] which answered a conjecture made by I. Beck in [5] in the negative is
such that ω(G(R)) = 20 < χ(G(R)) = 21. Let (R,m) be a finite SPIR
which is not a field. It is shown in Proposition 2.15 that χ(G(R)) =
ω(G(R)) = |U(R)|+ 2.

In Section 3 of this article, we discuss on the planarity of Γ(R) (re-
spectively, G(R)). We try to classify rings R such that Γ(R) (respec-
tively, G(R)) is planar. It is useful to recall the following definitions
and results from graph theory before we give a brief summary of the
results that are proved in Section 3. Let n ∈ N. A complete graph on
n vertices is denoted by Kn. A graph G = (V,E) is said to be bipartite
if V can be partitioned into two nonempty subsets V1 and V2 such that
each edge of G has one end in V1 and the other in V2. A bipartite graph
with vertex partition V1 and V2 is said to be complete if each element of
V1 is adjacent to every element of V2. Let m,n ∈ N. Let G = (V,E) be
a complete bipartite graph with V = V1∪V2. If |V1| = m and |V2| = n,
then G is denoted by Km,n [4, Definition 1.1.12].

Let G = (V,E) be a graph. Recall from [4, Definition 8.1.1] that G is
said to be planar if G can be drawn in a plane in such a way that no two
edges of G intersect in a point other than a vertex of G. Recall that two
adjacent edges are said to be in series if their common end vertex is of
degree two [8, page 9]. Two graphs are said to be homeomorphic if one
graph can be obtained from the other by insertion of vertices of degree
two or by the merger of edges in series [8, page 100]. It is useful to note
from [8, page 93] that the graph K5 is referred to as Kuratowski’s first
graph and the graph K3,3 is referred to as Kuratowski’s second graph.
The celebrated theorem of Kuratowski states that a graph G is planar
if and only if G does not contain either of Kuratowski’s two graphs or
any graph homeomorphic to either of them [8, Theorem 5.9].

It is convenient to name the following conditions satisfied by a graph
G = (V,E) so that it can be used throughout Section 3 of this article.

(i) We say that G satisfies (Ku1) if G does not contain K5 as a
subgraph (that is, equivalently, if ω(G) ≤ 4).

(ii) We say that G satisfies (Ku∗1) if G satisfies (Ku1) and moreover,
G does not contain any subgraph homeomorphic to K5.

(iii) We say that G satisfies (Ku2) if G does not contain K3,3 as a
subgraph.

(iv) We say that G satisfies (Ku∗2) if G satisfies (Ku2) and moreover,
G does not contain any subgraph homeomorphic to K3,3.
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Note that a graph G = (V,E) is planar if and only if G satisfies both
(Ku∗1) and (Ku∗2) [8, Theorem 5.9]. Thus if G is planar, then G satisfies
both (Ku1) and (Ku2). It is interesting to note that a graph G can be
nonplanar even if it satisfies both (Ku1) and (Ku2). For an example of
this type, refer [8, Figure 5.9(a), page 101] and the graph given in this
example does not satisfy (Ku∗2). It is not hard to construct an example
of a graph such that G satisfies (Ku1) but G does not satisfy (Ku∗1).

For any n ≥ 2, we denote the ring of integers modulo n by Zn. Let
p be a prime number and n ≥ 1. We denote the finite field containing
exactly pn elements by Fpn . Let R be a ring. It is observed in Lemma
3.1 that if Γ(R) satisfies (Ku1), then |Max(R)| ≤ 3 and |U(R)| ≤ 3.
Let R be a ring. If |Max(R)| = 3, then it is proved in Theorem 3.2
that Γ(R) is planar if and only if Γ(R) satisfies (Ku1) if and only if
R ∼= Z2 × Z2 × Z2 as rings. If |Max(R)| = 2, then it is shown in
Theorem 3.8 that Γ(R) is planar if and only if Γ(R) satisfies both
(Ku1) and (Ku2) if and only if R is isomorphic to one of the rings
from the collection {Z2 × Z2,Z2 × Z3}. For a local ring (R,m), it
is proved in Theorem 3.10 that Γ(R) is planar if and only if Γ(R)
satisfies (Ku1) if and only if R is isomorphic to one of the rings from

the collection {Z2,Z3,Z4,
Z2[X]

X2Z2[X]
,F4}. Let R be a ring. It is shown in

Theorem 3.11 that G(R) is planar if and only if G(R) satisfies (Ku1)
if and only if R is isomorphic to one of the rings from the collection

{Z2 × Z2,Z2,Z3,Z4,
Z2[X]

X2Z2[X]
,F4}.

2. Some basic properties of G(R)

Lemma 2.1. Let R be a ring. Then Γ(R), the comaximal graph of R
is a spanning subgraph of G(R).

Proof. Note that the vertex set of Γ(R) = the vertex set of G(R) =
the set of all elements of R. Let x, y be distinct elements of R such
that x and y are adjacent in Γ(R). Hence, Rx+Ry = R. This implies
by [3, Proposition 1.10(i)] that Rx ∩ Ry = Rxy. Therefore, x and y
are adjacent in G(R). This proves that Γ(R) is a spanning subgraph
of G(R). �

Lemma 2.2. Let R be a ring. Then G(R) is connected and moreover,
diam(G(R)) ≤ 2.

Proof. Let x, y ∈ R be such that x 6= y. Suppose that x and y are
not adjacent in G(R). Observe that x − 0 − y is a path in G(R) of
length two between x and y. This proves that G(R) is connected and
diam(G(R)) ≤ 2. �



66 VISWESWARAN AND PAREJIYA

We next try to classify rings R such that G(R) is complete (that is,
equivalently, we try to classify rings R such that diam(G(R)) = 1).
For any ring R, we denote the Krull dimension of R by dimR and we
denote the set of all prime ideals of R by Spec(R).

Lemma 2.3. If G(R) is complete, then dim R = 0.

Proof. Assume that G(R) is complete. Hence, any distinct x, y ∈ R are
adjacent in G(R) and so, Rx ∩ Ry = Rxy. Suppose that dimR > 0.
Let p1, p2 ∈ Spec(R) be such that p1 ⊂ p2. Let r ∈ p2\p1. We claim
that Rrm 6= Rrn for all distinct m,n ∈ N. Suppose that Rrm = Rrn

for some distinct m,n ∈ N. We can assume without loss of generality
that m < n. Observe that rm = srn for some s ∈ R. This implies that
rm(1−srn−m) = 0 ∈ p1. Since p1 ∈ Spec(R) and r /∈ p1, we obtain that
1−srn−m ∈ p1 ⊂ p2. As r ∈ p2, it follows that 1 = 1−srn−m+srn−m ∈
p2. This is impossible. Therefore, Rrm 6= Rrn for all distinct m,n ∈ N.
Hence, in particular, r 6= r2. Observe that Rr ∩ Rr2 = Rr2, whereas
Rrr2 = Rr3. From Rr2 6= Rr3, it follows that r and r2 are not adjacent
in G(R). This is in contradiction to the assumption that G(R) is
complete. Therefore, we get that dimR = 0. �

We prove in Proposition ?? that for a reduced ring R, G(R) is com-
plete if and only if R is von Neumann regular.

Proposition 2.4. Let R be a reduced ring. Then the following state-
ments are equivalent:

(i) G(R) is complete.
(ii) R is von Neumann regular.

Proof. (i) ⇒ (ii) Assume that G(R) is complete. We know from
Lemma 2.3 that dimR = 0. As R is reduced and dimR = 0, we obtain
from (d) ⇒ (a) of [9, Exercise 16, page 111] that R is von Neumann
regular.

(ii) ⇒ (i) Assume that R is von Neumann regular ring. Let x, y ∈ R
with x 6= y. It follows from (1)⇒ (3) of [9, Exercise 29, page 113] that
there are units u, v in R and idempotent elements e, f of R such that
x = ue and y = vf . Note that xy = uvef , Rx = Re, and Ry = Rf .
Thus Rx∩Ry = Re∩Rf = Ref = Rxy. This shows that x and y are
adjacent in G(R). Therefore, G(R) is complete. �

Let R be a ring such that R is not reduced. We next proceed to
classify such rings R in order that G(R) be complete.
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Lemma 2.5. Let R be a ring. If G(R) is complete, then (nil(R))2 =
(0).

Proof. Assume that G(R) is complete. Hence, any distinct x, y ∈ R
are adjacent in G(R) and so, Rx ∩Ry = Rxy. Let x ∈ nil(R) be such
that x 6= 0. Observe that x 6= xy for any y ∈ nil(R). For if x = xy
for some y ∈ nil(R), then x(1− y) = 0. This implies that x = 0, since
1 − y is a unit in R. This is a contradiction. Hence, x 6= xy for any
y ∈ nil(R). In particular, x 6= x2. As we are assuming that G(R) is
complete, we get that Rx ∩ Rx2 = Rx3. Therefore, Rx2 = Rx3 and
so, x2 = rx3 for some r ∈ R. Hence, x2(1 − rx) = 0. Since 1 − rx is
a unit in R, we obtain that x2 = 0. Let x, y ∈ nil(R). We claim that
xy = 0. This is clear if x = 0. Hence, we can assume that x 6= 0. It
is already noted that x 6= xy. Since G(R) is complete, we obtain that
Rxy = Rx ∩ Rxy = Rx2y. As x2 = 0, it follows that Rxy = (0) and
so, xy = 0. This proves that (nil(R))2 = (0). �

Lemma 2.6. Let R1, R2 be rings and let R = R1 × R2. Suppose that
R is not reduced. Then G(R) is not complete.

Proof. As R is not reduced, either R1 is not reduced or R2 is not
reduced. Without loss of generality, we can assume that R1 is not
reduced. Let x ∈ R1 be such that x 6= 0 but x2 = 0. Consider
the elements a, b ∈ R given by a = (x, 0) and b = (x, 1). It is clear
that a 6= b. From x2 = 0, it follows that ab = (0, 0). Observe that
a = (x, 0) = (1, 0)(x, 1) = (1, 0)b. Hence, Ra ⊆ Rb and so, Ra ∩ Rb =
Ra 6= ((0, 0)). Therefore, Ra ∩ Rb 6= Rab. This shows that a and
b are not adjacent in G(R) and hence, we obtain that G(R) is not
complete. �

Lemma 2.7. Let R be a ring such that R is not reduced. If G(R) is
complete, then R is local.

Proof. Assume that G(R) is complete. We know from Lemma 2.3 that
dimR = 0. Suppose that R is not local. Let us denote the ring R

nil(R)

by T . Observe that dimT = 0 and T is reduced. Hence, we obtain
from (d) ⇒ (a) of [9, Exercise 16, page 111] that T is von Neumann
regular. Since we are assuming that R is not local, it follows that T
is not local. As T is von Neumann regular, we obtain that T has at
least one nontrivial idempotent. Let t = r + nil(R) be a nontrivial
idempotent of T . Since nil(R) is a nil ideal of R (indeed, we know
from Lemma 2.5 that (nil(R))2 = (0)), it follows from [11, Proposition
1, page 72] that there exists a nontrivial idempotent e of R such that
t = e + nil(R). Observe that the mapping f : R → Re × R(1 − e)
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defined by f(x) = (xe, x(1 − e)) is an isomorphism of rings. Let us
denote the ring Re × R(1− e) by S. Since R ∼= S as rings, we obtain
that G(S) is complete. But we know from Lemma 2.6 that G(S) is not
complete. This is a contradiction. Therefore, R is local. �

Let (R,m) be a local ring such that R is not reduced. In Proposition
2.8, we classify such rings R in order that G(R) be complete.

Proposition 2.8. Let (R,m) be a local ring such that R is not reduced.
Then the following statements are equivalent:

(i) G(R) is complete.
(ii) m2 = (0) and |R

m
| = 2.

Proof. (i) ⇒ (ii) Assume that G(R) is complete. Hence, any distinct
x, y ∈ R are adjacent in G(R) and so, Rx ∩ Ry = Rxy. We know
from Lemma 2.3 that dimR = 0. Hence, we obtain that m is the only
prime ideal of R and therefore, it follows from [3, Proposition 1.8] that
nil(R) = m. Since G(R) is complete, we obtain from Lemma 2.5 that
m2 = (0). We next verify that |R

m
| = 2. Let x ∈ m, x 6= 0. Let r ∈ R\m.

Since r is a unit in R and x 6= 0, it follows that rx 6= 0. We claim that
x = rx. Suppose that x 6= rx. Then Rrx = Rx ∩ Rrx = Rrx2. Since
x2 = 0, we obtain that rx = 0. This is impossible. Therefore, x = rx.
This implies that x(1− r) = 0. As x 6= 0, we get that 1− r ∈ m. This
shows that R

m
= {0 + m, 1 + m} and so, |R

m
| = 2.

(ii) ⇒ (i) Let x, y ∈ R be such that x 6= y. We want to show that
Rx ∩ Ry = Rxy. If either x = 0 or y = 0, then it is clear that
(0) = Rx ∩ Ry = Rxy. Hence, we can assume that x 6= 0 and y 6= 0.
If at least one between x and y is a unit in R, then it is clear that
Rx∩Ry = Rxy. Therefore, we can assume that x, y ∈ m. As m2 = (0),
we get that xy = 0 and so, Rxy = (0). Let z ∈ Rx ∩ Ry. Then
z = rx = sy for some r, s ∈ R. We claim that z = 0. Suppose that
z 6= 0. As m2 = (0), it follows that r, s are units in R. Since |R

m
| = 2,

we obtain that r = 1 +m1 and s = 1 +m2 for some m1,m2 ∈ m. From
m2 = (0), we obtain that rx = (1 +m1)x = x and sy = (1 +m2)y = y.
Thus z = rx = sy implies that x = y. This is a contradiction and so,
z = 0. Therefore, (0) = Rx ∩ Ry = Rxy. This proves that G(R) is
complete. �

Theorem 2.9. Let R be a ring. The following statements are equiva-
lent:

(i) G(R) is complete.
(ii) Either R is von Neumann regular or (R,m) is a local ring with

m 6= (0) but m2 = (0) and |R
m
| = 2.



ON A GRAPH ASSOCIATED TO A COMMUTATIVE RING 69

Proof. (i)⇒ (ii) Assume that G(R) is complete. If R is reduced, then
we know from (i) ⇒ (ii) of Proposition 2.4 that R is von Neumann
regular. Suppose that R is not reduced. Then it follows from Lemma
2.7 and (i)⇒ (ii) of Proposition 2.8 that (R,m) is local which satisfies
m2 = (0) and |R

m
| = 2. Since R is not reduced, it is clear that m 6= (0).

(ii)⇒ (i) If R is von Neumann regular, then it follows from (ii)⇒ (i)
of Proposition 2.4 that G(R) is complete. Suppose that (R,m) is local
with m 6= (0) but m2 = (0) and |R

m
| = 2. Then we obtain from (ii)⇒ (i)

of Proposition 2.8 that G(R) is complete. �

Let R be a ring. We know from Lemma 2.1 that Γ(R) is a span-
ning subgraph of G(R). Thus if ω(G(R)) < ∞, then it follows that
ω(Γ(R)) <∞. Therefore, we obtain from [14, Proposition 2.2] that R
is a finite ring. We are interested to know the status of the moreover
part of ??Theorem 2.3]14 in the case of G(R). In Proposition 2.10, we
classify reduced rings R such that χ(G(R)) <∞.

Proposition 2.10. Let R be a reduced ring. Then the following state-
ments are equivalent:

(i) χ(G(R)) <∞.
(ii) ω(G(R)) <∞.
(iii) There exist n ∈ N and finite fields F1, . . . , Fn such that R ∼=

F1 × · · · × Fn as rings.
Moreover, if either (i), (ii) or (iii) holds (and hence, all the three

hold), then χ(G(R)) = ω(G(R)) = |R|.

Proof. (i)⇒ (ii) This is clear.

(ii) ⇒ (iii) It is observed in Lemma 2.1 that Γ(R) is a spanning sub-
graph of G(R). Therefore, we obtain that ω(Γ(R)) < ∞. Hence, we
obtain from [14, Proposition 2.2] that R is finite. (This part of the
proof does not make use of the fact that R is reduced). Since we are
assuming that R is reduced, it follows that there exist n ∈ N and finite
fields F1, . . . , Fn such that R ∼= F1 × · · · × Fn as rings.

(iii)⇒ (i) If (iii) holds, then R is a finite ring and so, χ(G(R)) <∞.

We next verify the moreover part of this Proposition. Assume that
(iii) holds. Then R is a finite von Neumann regular ring. Hence,
we obtain from (ii) ⇒ (i) of Proposition 2.4 that G(R) is complete.
Thus G(R) is a complete graph on |R| vertices. Therefore, χ(G(R)) =
ω(G(R)) = |R|. �

Proposition 2.10 gives us the status of [14, Theorem 2.3] for G(R)
in the case of reduced rings R. We are interested in determining the
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status of [14, Theorem 2.3] for G(R) in the case of rings R such that
R is not reduced.

Remark 2.11. Let R be a ring such that R is not reduced. If ω(G(R)) <
∞, then it is already noted in the proof of (ii) ⇒ (iii) of Proposition
2.10 that R is finite. Let {mi|i ∈ {1, . . . , n}} denote the set of all
maximal ideals of R. Observe that nil(R) = ∩ni=1mi is nilpotent. Let
t ∈ N be least with the property that (∩ni=1mi)

t = (0). Since R is
not reduced, it is clear that t ≥ 2. As mt

i + mt
j = R for all distinct

i, j ∈ {1, . . . , n}, it follows from [3, Proposition 1.10 (i)] that ∩ni=1m
t
i =∏n

i=1m
t
i and so, ∩n

i=1m
t
i = (0). Moreover, we obtain from the Chinese

remainder theorem [3, Proposition 1.10 (ii) and (iii)] that the mapping
f : R → R

mt
1
× · · · × R

mt
n

given by f(r) = (r + mt
1, . . . , r + mt

n) is an

isomorphism of rings. Let i ∈ {1, . . . , n} and let us denote the ring R
mt

i

by Ri. Note that Ri is a finite local ring with mi

mt
i

as its unique maximal

ideal and R ∼= R1 × · · · ×Rn as rings.

Let (R,m) be a finite local ring which is not reduced. In Proposition
2.12, we provide a sufficient condition on m in order that χ(G(R)) =
ω(G(R)).

Proposition 2.12. Let (R,m) be a finite local ring which is not redu-
ced. If m2 = (0), then χ(G(R)) = ω(G(R)) = |U(R)|+ k + 1, where k
is the number of minimal ideals of R.

Proof. Let {ui|i ∈ {1, . . . ,m}} denote the set of all units of R and let
{Rxj|j ∈ {1, . . . , k}} denote the set of all minimal ideals of R. We
claim that the subgraph of G(R) induced on {0, u1, . . . , um, x1, . . . , xk}
is a clique. It is clear that 0 is adjacent to all the vertices v of G(R)
such that v 6= 0 and if u ∈ U(R), then u is adjacent to all the vertices w
of G(R) such that w 6= u. Let j1, j2 ∈ {1, . . . , k} be such that j1 6= j2.
Since Rxj1 and Rxj2 are distinct minimal ideals of R, it follows that
Rxj1∩Rxj2 = (0) and so, Rxj1∩Rxj2 = (0) = Rxj1xj2 . This shows that
xj1 and xj2 are adjacent in G(R). From the above given arguments, we
obtain that the subgraph of G(R) induced on {0, u1 . . . , um, x1 . . . , xk}
is a clique. Therefore, ω(G(R)) ≥ m + k + 1. We next verify that
the vertices of G(R) can be properly colored using a set of m + k + 1
distinct colors. Let {c0, c1, . . . , cm, cm+1, . . . , cm+k} be a set consisting
of m + k + 1 distinct colors. Let us assign the color c0 to 0, the color
ci to ui for each i ∈ {1, . . . ,m}, and the color cm+j to xj for each
j ∈ {1, . . . , k}. Let x ∈ R\{0} be such that x is not a unit of R. We
are assuming that m2 = (0). Hence, Rx is a minimal ideal of R and so,
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Rx = Rxj for a unique j ∈ {1, . . . , k}. Let us assign the color cm+j to
x. We claim that the above assignment of colors to the vertices of G(R)
is a proper vertex coloring of G(R). Let x, y ∈ m\{0} be such that x
and y are adjacent in G(R). Since m2 = (0), it follows that Rx∩Ry =
Rxy = (0). Therefore, Rx and Ry are distinct minimal ideals of R. Let
j1, j2 ∈ {1, . . . , k} be such that Rx = Rxj1 and Ry = Rxj2 . Observe
that j1 6= j2, x is assigned the color cm+j1 , and y is assigned the color
cm+j2 . This shows that the above assignment of colors is a proper
vertex coloring of G(R). Hence, we get that χ(G(R)) ≤ m + k + 1.
Therefore, m + k + 1 ≤ ω(G(R)) ≤ χ(G(R)) ≤ m + k + 1 and so,
χ(G(R)) = ω(G(R)) = m+ k + 1. �

Remark 2.13. Let G = (V,E) be a finite graph. Assume that G is
simple. Let V1, V2 be nonempty subsets of V such that V1 ∩ V2 = ∅
and V = V1 ∪ V2. Let Gi be the subgraph of G induced on Vi for each
i ∈ {1, 2}. Suppose that for each a ∈ V1 and b ∈ V2, a, b are adjacent
in G. That is, G = G1 ∨G2. Then it is not hard to verify that ω(G) =
ω(G1) + ω(G2) and χ(G) = χ(G1) + χ(G2). Let R be a finite ring.
Note that the subgraph of G(R) induced on U(R) is a clique and if u ∈
U(R), r ∈ NU(R), then u and r are adjacent inG(R). Let us denote the
subgraph ofG(R) induced on U(R) byG1(R) and the subgraph ofG(R)
induced on NU(R) by G2(R). Observe that χ(G1(R)) = ω(G1(R)) =
|U(R)|. Hence, to determine ω(G(R)) (respectively, χ(G(R))), it is
enough to determine ω(G2(R)) (respectively, χ(G2(R))). In Example
2.14, we mention an example of a finite local ring (R,m) such that
ω(G(R)) < χ(G(R)) and this illustrates that the hypothesis m2 = (0)
cannot be omitted in Proposition 2.12. The example mentioned in
Example 2.14 is an interesting and inspiring example due to Anderson
and Nasser [1] which answered a conjecture of I. Beck [5] in the negative.

Example 2.14. Let T = Z4[X, Y, Z] be the polynomial ring in three
variables X, Y, Z over Z4. Let I be the ideal of T generated by {X2 −
2, Y 2−2, Z2, XY, Y Z−2, XZ, 2X, 2Y, 2Z}. LetR = T

I
. Then ω(G(R)) =

20 < χ(G(R)) = 21.

Proof. It was already noted in [1] that R is a finite local ring with m =
TX+TY+TZ

I
as its unique maximal ideal, |U(R)| = 16, and |R| = 32.

Moreover, it was noted in [1] that m2 = R(2 + I) = {0 + I, 2 + I} and
m3 = (0 + I). It is convenient to denote X + I by x, Y + I by y, and
Z+I by z. Note that NU(R) = m = {0+I, x, y, z, 2+I, x+y, y+z, z+
x, x+y+z, x+2, y+2, z+2, x+y+2, y+z+2, z+x+2, x+y+z+2}.
It was already observed in the proof of [7, Proposition 2.1] that the set
of all nonzero proper ideals of R equals {R(2 + I), Rx,Ry,Rz,R(x +
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y), R(y+ z), R(z + x), R(x+ y+ z), Rx+Ry,Ry+Rz,Rz +Rx,Rx+
R(y+ z), Ry+R(z + x), Rz +R(x+ y), Rx+Ry+Rz}. Observe that
m2 = R(2 + I) is the unique minimal ideal of R and hence, for any
m ∈ m\m2, Rm = R(m+ 2 + I). In view of Remark 2.13, to determine
ω(G(R)) (respectively, χ(G(R))), it is enough to determine ω(G2(R))
(respectively, χ(G2(R))), where G2(R) is the subgraph of G(R) induced
on m. As m3 = (0+I), it follows that 2+I is not adjacent to m in G(R)
for any m ∈ m\m2. It is clear from the above given arguments that
to determine ω(G2(R)) (respectively, χ(G2(R))), we need to determine
ω(H) (respectively, χ(H)), where H is the subgraph of G(R) induced
on {0 + I, x, y, z, x+ y, y + z, z + x, x+ y + z}. Note that R(2 + I) ⊆
Rm1∩Rm2 for any m1,m2 ∈ m\m2. Since xy = xz = x(y+z) = 0+ I,
it follows that x is not adjacent to any member of {y, z, y+z} in G(R).
It is clear that if m1,m2 ∈ m\m2 are such that Rm1 6= Rm2, then
Rm1 ∩Rm2 ⊆ m2. As x(x+ y) = x(x+ z) = x(x+ y + z) = 2 + I, we
obtain that x is adjacent to each member of {x + y, x + z, x + y + z}
in G(R). Observe that (x+ y)(x+ z) = (x+ z)(x+ y+ z) = 0 + I and
so, x+ z is not adjacent to any of the member of {x+ y, x+ y + z} in
G(R). The clique of H of largest size containing x is the subgraph of
H induced on {0 + I, x, x + y, x + y + z}. Similarly, it can be verified
that the clique of H of largest size containing y is the subgraph of H
induced on {0 + I, y, z, x + y}. Note that the clique of H of largest
size containing z is the subgraph of H induced on {0 + I, z, y, x + y}
and the subgraph of H induced on {0 + I, z, y + z, x + y + z}. It is
easy to verify that the clique of H of largest size containing x+y is the
subgraph of H induced on {0+I, x+y, x, x+y+z}; the subgraph of H
induced on {0+I, x+y, z, x+y+z}, and the subgraph of H induced on
{0+I, x+y, y, z}. Observe that the clique ofH of largest size containing
y + z is the subgraph of H induced on {0 + I, y + z, z, x + y + z};
the clique of H of largest size containing x + z is the subgraph of
H induced on {0 + I, x + z, x} and the subgraph of H induced on
{0 + I, x+ z, y}; and the clique of H of largest size containing x+y+ z
is the subgraph of H induced on {0+I, x+y+z, x, x+y}; the subgraph
of H induced on {0 + I, x + y + z, z, x + y}, and the subgraph of H
induced on {0 + I, x + y + z, z, y + z}. From the above discussion,
it is now clear that ω(H) = 4. Hence, χ(H) ≥ 4. We claim that
χ(H) > 4. Suppose that χ(H) = 4. This implies that the vertex set of
H can be properly colored using a set of four distinct colors. Note that
V (H) = {0 + I, x, y, z, x+ y, y + z, x+ z, x+ y + z}. Let {c1, c2, c3, c4}
be a set of four distinct colors. As χ(H) = 4 by assumption, it follows
that there exist subsets V1, V2, V3, V4 of V (H) such that V (H) = ∪4i=1Vi,
where Vi = {v ∈ V (H)|v receives the color ci} for each i ∈ {1, 2, 3, 4}.
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Since the subgraph of H induced on {0 + I, x, x + y, x + y + z} is a
clique, we obtain that no two of {0 + I, x, x + y, x + y + z} can be in
the same Vi for any i ∈ {1, 2, 3, 4}. Without loss of generality, we can
assume that 0+I ∈ V1, x ∈ V2, x+y ∈ V3, and x+y+z ∈ V4. It is now
clear that V1 = {0 + I}. Since z is adjacent to both x+ y and x+ y+ z
in H, z must be in V2. As x and x + z are adjacent in H, we obtain
that x+ z cannot be in V1∪V2. Hence, either x+ z ∈ V3 or x+ z ∈ V4.
Suppose that x + z ∈ V3. As y + z is adjacent to each member of
{z, x+ z, x+ y + z} in H, we get that y + z cannot be in ∪4i=1Vi. This
is a contradiction. Suppose that x + z ∈ V4. Since y is adjacent to
each member of {z, x+ y, x+ z}, it follows that y cannot be in ∪4i=1Vi.
This is a contradiction. Therefore, χ(H) ≥ 5. We now verify that the
vertices of H can be properly colored using a set of five distinct colors.
Let {ci|i ∈ {1, 2, 3, 4, 5}} be a set consisting of five distinct colors. Let
us assign the color c1 to 0 + I, the color c2 to x, the color c3 to x+ y,
the color c4 to x + y + z, the color c2 to z, the color c4 to y, the color
c3 to x + z, and the color c5 to y + z. The above assignment of colors
is indeed a proper vertex coloring of H and so, χ(H) ≤ 5. Therefore,
χ(H) = 5. Since |U(R)| = 16 and the subgraph G1(R) of G(R) induced
on U(R) is complete, it follows as is remarked in Remark 2.13 that
ω(G(R)) = ω(G1(R)) + ω(G2(R)) = |U(R)|+ ω(H) = 16 + 4 = 20 and
χ(G(R)) = χ(G1(R)) +χ(G2(R)) = |U(R)|+χ(H) = 16 + 5 = 21. �

Let (R,m) be a finite local ring which is not reduced. In Proposition
2.15, we provide another sufficient condition in order that χ(G(R)) =
ω(G(R)).

Proposition 2.15. Let (R,m) be a finite SPIR which is not reduced.
Then χ(G(R)) = ω(G(R)) = |U(R)|+ 2.

Proof. Let n ≥ 2 be least with the property that mn = (0). Let m ∈ m
be such that m = Rm. Note that {Rmi|i ∈ {1, . . . , n − 1}} is the set
of all nonzero proper ideals of R. We claim that G2(R), the subgraph
of G(R) induced on NU(R) = m is a star graph. It is clear that 0
is adjacent to all the nonzero elements of R in G(R) and hence, 0 is
adjacent to all the elements of m\{0} in G2(R). Let x, y ∈ m\{0}
be such that x 6= y. Note that there exist i, j ∈ {1, . . . , n − 1} such
that Rx = mi and Ry = mj. Since the ideals of R are comparable
under the inclusion relation, it follows that Rx∩Ry is either mi or mj.
However, Rxy = mi+j /∈ {mi,mj}. Hence, x and y are not adjacent in
G(R). This shows that G2(R) is a star graph. Therefore, χ(G2(R)) =
ω(G2(R)) = 2. Now, it follows as is remarked in Remark 2.13 that
χ(G(R)) = χ(G1(R)) + χ(G2(R)), where G1(R) is the subgraph of
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G(R) induced on U(R). Therefore, χ(G(R)) = |U(R)| + 2. Note that
ω(G(R)) = ω(G1(R)) + ω(G2(R)) = |U(R)| + 2. This proves that
χ(G(R)) = ω(G(R)) = |U(R)|+ 2. �

Proposition 2.16. Let R = F ×S, where F is a finite field and (S,m)
is a finite SPIR which is not a field. Then χ(G(R)) = ω(G(R)) =
|U(R)|+ |F\{0}|+ |U(S)|+ 2.

Proof. We know from Remark 2.13 that χ(G(R)) = χ(G1(R))+χ(G2(R))
and ω(G(R)) = ω(G1(R)) +ω(G2(R)), where G1(R) is the subgraph of
G(R) induced on U(R) and G2(R) is the subgraph of G(R) induced on
NU(R). Since G1(R) is a complete graph on |U(R)| vertices, we get
that χ(G1(R)) = ω(G1(R)) = |U(R)|. Let n ≥ 2 be least with the pro-
perty that mn = (0). Let us next determine χ(G2(R)) and ω(G2(R)).
Note that R is a principal ideal ring. The set of all proper ideals of R
equals {(0)× (0), (0)×mi, (0)× S, F × (0), F ×mi|i ∈ {1, . . . , n− 1}}.
Let x ∈ m be such that m = Sx. It is clear that the subgraph
of G2(R) induced on A = {(0, 0), (α, 0), (0, u), (0, x)|α ∈ F\{0}, u ∈
U(S)} is a clique. Therefore, ω(G2(R)) ≥ |F\{0}| + |U(S)| + 2. Let
F\{0} = {αi|i ∈ {1, . . . , l}} and let U(S) = {uj|j ∈ {1, . . . ,m}} so
that U(R) = {(αi, uj)|i ∈ {1, . . . , l}, j ∈ {1, . . . ,m}}. We next verify
that the vertices of G2(R) can be properly colored using a set of l+m+2
distinct colors. Let {d0, di, dl+j, dl+m+1|i ∈ {1, . . . , l}, j ∈ {1, . . . ,m}}
be a set of l+m+ 2 distinct colors. Let us assign the color d0 to (0, 0),
the color di to (αi, 0) for each i ∈ {1, . . . , l}, the color dl+j to (0, uj) for
each j ∈ {1, . . . ,m}, and the color dl+m+1 to (0, x). Let r ∈ R be such
that r ∈ NU(R) with r /∈ A. Observe that Rr ∈ {(0)×mk, F ×mk|k ∈
{1, . . . , n − 1}}. Either Rr = (0) × mk or Rr = F × mt for some
k, t ∈ {1, . . . , n − 1}. Note that r and (0, x) are not adjacent in
G2(R). Let us assign the color dl+m+1 to r. Let r1, r2 ∈ NU(R)\A
with r1 6= r2. Then it is clear that {r1, r2, (0, x)} is an independent
set of G2(R). Hence, the above assignment of l + m + 2 colors to
the vertices of G2(R) is a proper vertex coloring of G2(R). Therefore,
χ(G2(R)) ≤ l + m + 2. Hence, l + m + 2 ≤ ω(G2(R)) ≤ χ(G2(R)) ≤
l+m+ 2 and so, χ(G2(R)) = ω(G2(R)) = l+m+ 2. Therefore, we ob-
tain that χ(G(R)) = χ(G1(R)) + χ(G2(R)) = ω(G1(R)) + ω(G2(R)) =
ω(G(R)) = lm+ l +m+ 2 = |U(R)|+ |F\{0}|+ |U(S)|+ 2. �

3. On the planarity of G(R)

The aim of this section is to classify rings R such that Γ(R) (respec-
tively, G(R)) is planar. Let R be a ring. We know from Lemma 2.1
that Γ(R) is a spanning subgraph of G(R). Thus if G(R) is planar,
then Γ(R) is planar. We first classify rings R such that Γ(R) is planar.
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Lemma 3.1. Let R be a ring. If Γ(R) satisfies (Ku1), then the follo-
wing hold.

(i) R is a finite ring and |U(R)| ≤ 3.
(ii) |Max(R)| ≤ 3 and if |Max(R)| ≥ 2, then |U(R)| ≤ 2.

Proof. We are assuming that Γ(R) satisfies (Ku1). Hence, ω(Γ(R)) ≤
4. Now, it follows from [14, Proposition 2.2] that R is finite. Suppose
that |U(R)| ≥ 4. Let {1, u, v, w} ⊆ U(R). Observe that the subgraph
of Γ(R) induced on {0, 1, u, v, w} is a clique on five vertices. This is
impossible, since ω(Γ(R)) ≤ 4. Therefore, we get that |U(R)| ≤ 3.

(ii) We know from [14, Theorem 2.3] that χ(Γ(R)) = ω(Γ(R)) = t+ l,
where t is the number of maximal ideals of R and l is the number
of units of R. It follows from ω(Γ(R)) ≤ 4 and 1 ≤ |U(R)| that
t + 1 ≤ t + l ≤ 4. Therefore, t = |Max(R)| ≤ 3. Suppose that t ≥ 2.
Then 2 + l ≤ t+ l ≤ 4. Hence, we obtain that |U(R)| = l ≤ 2. �

Theorem 3.2. Let R be a ring such that |Max(R)| = 3. The following
statements are equivalent:

(i) Γ(R) is planar.
(ii) Γ(R) satisfies (Ku∗1) and (Ku∗2).
(iii) Γ(R) satisfies (Ku1).
(iv) R ∼= Z2 × Z2 × Z2 as rings.

Proof. (i)⇒ (ii) This follows from Kuratowski’s theorem [8, Theorem
5.9].

(ii)⇒ (iii) This is clear.

(iii) ⇒ (iv) We know from Lemma 3.1 (i) that R is a finite ring.
As |Max(R)| = 3, it follows that R ∼= R1 × R2 × R3 as rings, where
(Ri,mi) is a finite local ring for each i ∈ {1, 2, 3}. Let us denote the ring
R1×R2×R3 by T . Since R ∼= T as rings, we obtain that Γ(T ) satisfies
(Ku1). We assert that |U(Ri)| = 1 for each i ∈ {1, 2, 3}. Suppose that
|U(Ri)| > 1 for some i ∈ {1, 2, 3}. Without loss of generality, we can
assume that |U(R1)| > 1. Let u ∈ U(R1)\{1}. Observe that the sub-
graph of Γ(T ) induced on {(1, 1, 1), (u, 1, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1)}
is a clique on five vertices. This is in contradiction to the fact that
ω(Γ(T )) ≤ 4. Therefore, |U(Ri)| = 1 for each i ∈ {1, 2, 3}. Let
i ∈ {1, 2, 3}. Let x ∈ mi. As 1 + x ∈ U(Ri), it follows that 1 + x = 1
and so, x = 0. This proves that Ri = {0, 1}. Therefore, we obtain that
R ∼= Z2 × Z2 × Z2 as rings.

(iv)⇒ (i) Let us denote the ring Z2×Z2×Z2 by T . Note that |T | = 8
and T = {v1 = (1, 1, 0), v2 = (1, 0, 1), v3 = (0, 1, 1), v4 = (1, 1, 1), v5 =
(0, 0, 1), v6 = (0, 1, 0), v7 = (1, 0, 0), v8 = (0, 0, 0)}. Observe that Γ(T )
is the union of the cycles Γi for i ∈ N such that i ≤ 7 and the edge
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v4 − v8, where the cycles Γi are given by Γ1 : v1 − v2 − v3 − v1 Γ2 :
v1 − v2 − v4 − v1, Γ3 : v2 − v3 − v4 − v2, Γ4 : v1 − v4 − v3 − v1,
Γ5 : v1 − v5 − v4 − v1, Γ6 : v2 − v4 − v6 − v2, and Γ7 : v3 − v4 − v7 − v3.
The cycle Γ1 can be represented by means of a triangle ∆1 whose
vertices are v1, v2, and v3. The vertex v4 can be plotted inside ∆1

representing Γ1 and on joining the vertex vi and v4 by a line segment
for each i ∈ {1, 2, 3}, we obtain triangles ∆2,∆3,∆4, where the vertices
of ∆2 are v1, v2, and v4 and it represents Γ2; the vertices of ∆3 are v2, v3,
and v4 and it represents Γ3; the vertices of ∆4 are v1, v4, and v3 and it
represents Γ4. The vertex v5 can be plotted inside ∆2 and on joining v1
and v5 (respectively, v4 and v5) by a line segment, we obtain a triangle
∆5 whose vertices are v1, v5, and v4 and it represents Γ5. Similarly, the
vertex v6 can be plotted inside ∆3 and on joining v2 and v6 (respectively,
v4 and v6) by a line segment, we obtain a triangle ∆6 whose vertices
are v2, v4, and v6 and it represents Γ6. The vertex v7 can be plotted
inside ∆3 and on joining v7 and v3 (respectively, v4 and v7) by a line
segment, we obtain a triangle ∆7 whose vertices are v3, v4, and v7 and
it represents Γ7. The vertex v8 can be plotted inside ∆4 and the edge
v4−v8 can be drawn inside ∆4 in such a way that there are no crossing
over of the edges. This shows that Γ(T ) is planar. As R ∼= T as rings,
we get that Γ(R) is planar. �

Let R b a ring such that |Max(R)| = 2. We next try to classify such
rings R in order that Γ(R) satisfies (Ku1). We denote the polynomial
ring in one variable X over a ring T by T [X].

Proposition 3.3. Let R be a ring such that |Max(R)| = 2. The
following statements are equivalent:

(i) Γ(R) satisfies (Ku1).
(ii) R is isomorphic to one of the rings from the collection C =

{Z2 × Z2,Z2 × Z3,Z2 × Z4,Z2 × Z2[X]
X2Z2[X]

}.

Proof. (i) ⇒ (ii) We know from Lemma 3.1 (i) that R is finite and
since |Max(R)| = 2, we obtain from Lemma 3.1 (ii) that |U(R)| ≤ 2.
Moreover, we obtain that R ∼= R1 × R2 as rings, where (Ri,mi) is a
finite local ring for each i ∈ {1, 2}. Let us denote the ring R1 × R2

by T . As R ∼= T as rings, we obtain that |U(T )| ≤ 2. Note that
U(T ) = U(R1)× U(R2). We consider the following cases.
Case (A) |U(T )| = 1

As |U(T )| = |U(R1)||U(R2)|, we obtain that |U(Ri)| = 1 for each i ∈
{1, 2}. Since Ri is local for each i ∈ {1, 2}, it follows that Ri = {0, 1}.
Hence, R ∼= Z2 × Z2.
Case (B) |U(T )| = 2
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As 2 = |U(T )| = |U(R1)||U(R2)|, it follows that |U(Ri)| = 1 for
exactly one i ∈ {1, 2}. Without loss of generality, we can assume that
|U(R1)| = 1. Then R1 = {0, 1} and |U(R2)| = 2. Either R2 is a field or
R2 is not a field. If R2 is a field, then it follows from R2 = {0}∪U(R2)
that |R2| = 3 and so, R2

∼= Z3. Therefore, R ∼= Z2 × Z3 as rings.
Suppose that R2 is not a field. Then |m2| ≥ 2 and it follows from
|U(R2)| = 2 that |m2| = 2 and so, |R2| = 4. Therefore, either R2

∼= Z4

or R2
∼= Z2[X]

X2Z2[X]
. Hence, either R ∼= Z2 × Z4 or R ∼= Z2 × Z2[X]

X2Z2[X]
as

rings.
Thus if Γ(R) satisfies (Ku1), then R is isomorphic to one of the rings

from the collection C, where C = {Z2×Z2,Z2×Z3,Z2×Z4,Z2× Z2[X]
X2Z2[X]

}.
(ii)⇒ (i) We are assuming that R is isomorphic to one of the rings from
the collection C. For any member T ∈ C, |Max(T )| = 2 and |U(T )| ∈
{1, 2}. Therefore, by [14, Theorem 2.3], we get that
ω(Γ(T )) = |Max(T )| + |U(T )| ∈ {3, 4}. Hence, Γ(T ) satisfies (Ku1).
As R is isomorphic to one of the rings T from the collection C, we
obtain that Γ(R) satisfies (Ku1). �

Lemma 3.4. Let R1, R2 be rings and let R = R1 ×R2. If R2 is not a
field and if |U(R2)| ≥ 2, then Γ(R) does not satisfy (Ku2).

Proof. Let x ∈ R2\{0} be such that x is not a unit in R2. Let u, v ∈
U(R2) be such that u 6= v. Let V1 = {(0, u), (0, v), (1, u)} and let V2 =
{(1, 0), (1, x), (1, v)}. Observe that V1∪V2 ⊆ V (Γ(R)), V1∩V2 = ∅, and
the subgraph of Γ(R) induced on V1 ∪ V2 contains K3.3 as a subgraph.
Therefore, we obtain that Γ(R) does not satisfy (Ku2). �

Corollary 3.5. Let R ∈ D = {Z2×Z4,Z2× Z2[X]
X2Z2[X]

}. Then Γ(R) does

not satisfy (Ku2).

Proof. Note that Z4,
Z2[X]

X2Z2[X]
are not fields and |U(Z4)| = |U( Z2[X]

X2Z2[X]
)| =

2. Therefore, we obtain from Lemma 3.4 that if R ∈ D, then Γ(R) does
not satisfy (Ku2). �

Lemma 3.6. Let R = Z2 × Z2. Then Γ(R) is planar.

Proof. Since Γ(R) is a simple graph on four vertices, it is clear that
Γ(R) is planar. Indeed, Γ(R) is the union of the cycle Γ : (1, 1) −
(1, 0)− (0, 1)− (1, 1) and the edge (0, 0)− (1, 1). �

Lemma 3.7. Let R = Z2 × Z3. Then Γ(R) is planar.

Proof. Note that V (Γ(R)) = {v1 = (1, 0), v2 = (1, 1), v3 = (0, 1), v4 =
(1, 2), v5 = (0, 2), v6 = (0, 0)}. It is not hard to show that Γ(R) is
the union of the cycles Γi where i ∈ N is such that i ≤ 7 and the
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cycles Γi are given by Γ1 : v1 − v2 − v3 − v1, Γ2 : v1 − v2 − v4 − v1,
Γ3 : v2 − v3 − v4 − v2, Γ4 : v1 − v4 − v3 − v1, Γ5 : v1 − v4 − v5 − v1,
Γ6 : v2 − v4 − v5 − v2, and Γ7 : v2 − v4 − v6 − v2. Note that Γ1 can be
represented by means of a triangle ∆1, whose vertices are v1, v2, and
v3. The vertex v4 can be plotted inside ∆1 and on joining vi to v4 by
a line segment for each i ∈ {1, 2, 3}, we obtain triangles ∆2, ∆3, and
∆4, where the vertices of ∆2 are v1, v2, and v4 and it represents Γ2;
v2, v3, and v4 are vertices of ∆3 and it represents Γ3; v1, v4, and v3 are
vertices of ∆4 and it represents Γ4. Now, v5 can be plotted inside ∆2

and on joining v1 and v5 (respectively, v4 and v5) by a line segment, we
obtain triangle ∆5 whose vertices are v1, v4, and v5 and it represents
Γ5; now, on joining v2 and v5 by a line segment, we obtain triangle ∆6

whose vertices are v2, v4, and v5 and it represents Γ6; v6 can be plotted
inside ∆3 and on joining v2 and v6 (respectively, v4 and v6)by a line
segment, we obtain triangle ∆7 whose vertices are v2, v4, and v6 and it
represents Γ7. From the above given arguments, it is clear that Γ(R)
can be drawn in a plane in such a way that there are no crossing over
of the edges. This proves that Γ(R) is planar. �

Theorem 3.8. Let R be a ring such that |Max(R)| = 2. The following
statements are equivalent:

(i) Γ(R) is planar.
(ii) Γ(R) satisfies both (Ku∗1) and (Ku∗2).
(iii) Γ(R) satisfies both (Ku1) and (Ku2).
(iv) R is isomorphic to one of the rings from the collection {Z2 ×

Z2,Z2 × Z3}.

Proof. (i)⇒ (ii) This follows from Kuratowski’s theorem [8, Theorem
5.9].

(ii)⇒ (iii) This is clear.

(iii)⇒ (iv) Assume that Γ(R) satisfies both (Ku1) and (Ku2). As the
number of maximal ideals of R is exactly two and Γ(R) satisfies (Ku1),
we obtain from (i) ⇒ (ii) of Proposition 3.3 that R is isomorphic to
one of the rings from the collection C = {Z2×Z2,Z2×Z3,Z2×Z4,Z2×
Z2[X]

X2Z2[X]
}. Let D = {Z2×Z4,Z2× Z2[X]

X2Z2[X]
}. We know from Corollary 3.5

that if T ∈ D, then Γ(T ) does not satisfy (Ku2). Thus if Γ(R) satisfies
both (Ku1) and (Ku2), then R is isomorphic to one of the rings from
the collection {Z2 × Z2,Z2 × Z3}.
(iv) ⇒ (i) We know from Lemma 3.6 (respectively, from Lemma 3.7)
that Γ(Z2×Z2) (respectively, Γ(Z2×Z3)) is planar. Thus if (iv) holds,
then Γ(R) is planar. �
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Let (R,m) be a local ring. In Proposition 3.9, we try to classify such
rings R in order that Γ(R) satisfies (Ku1).

Proposition 3.9. Let (R,m) be a local ring. The following statements
are equivalent:

(i) Γ(R) satisfies (Ku1).
(ii) R is isomorphic to one of the rings from the collection R, where
R = {Z2,Z3,Z4,
Z2[X]

X2Z2[X]
,F4}.

Proof. (i)⇒ (ii) We are assuming that Γ(R) satisfies (Ku1). We know
from Lemma 3.1 (i) that |U(R)| ≤ 3. We consider the following cases.
Case(A) |U(R)| = 1

In such a case, it is already noted in the proof of (i) ⇒ (ii) of
Proposition 3.3 (See Case(A)) that R = {0, 1} and so, R ∼= Z2 as
rings.
Case(B) |U(R)| = 2

It is already observed in the proof of (i)⇒ (ii) of Proposition ?? (See
Case(B)) that R is isomorphic to one of the rings from the collection

{Z3,Z4,
Z2[X]

X2Z2[X]
}.

Case(C) |U(R)| = 3
In this case, we first verify that R is a field. Suppose that R is

not a field. Since we are assuming that |U(R)| = 3, it follows that
2 ≤ |m| ≤ 3. If |m| = 2, then |R| = |m| + |U(R)| = 5. Hence,
R ∼= Z5 as rings. This contradicts the assumption that R is not a field.
If |m| = 3, then |R| = |m| + |U(R)| = 6. This is impossible, since
the number of elements in any finite local ring is a power of a prime
number. Therefore, R is a field. Hence, |R| = |m|+ |U(R)| = 4 and so,
R ∼= F4 as rings.

Thus if Γ(R) satisfies (Ku1), then R is isomorphic to one of the rings

from the collection R = {Z2,Z3,Z4,
Z2[X]

X2Z2[X]
,F4}.

(iv) ⇒ (i) We are assuming that R is isomorphic to one of the rings

from the collection R = {Z2,Z3,Z4,
Z2[X]

X2Z2[X]
,F4}. Note that if T ∈ R,

then |T | ≤ 4 and so, ω(Γ(T )) ≤ 4. Therefore, Γ(T ) satisfies (Ku1) and
so, Γ(R) satisfies (Ku1). �

In Theorem 3.10, we classify local rings (R,m) such that Γ(R) is
planar.

Theorem 3.10. Let (R,m) be a local ring. The following statements
are equivalent:

(i) Γ(R) is planar.
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(ii) Γ(R) satisfies (Ku∗1) and (Ku∗2).
(iii) Γ(R) satisfies (Ku1).
(iv) R is isomorphic to one of the rings from the collection R, where
R is as in statement (ii) of Proposition 3.9S.

Proof. (i)⇒ (ii) This follows from Kuratowski’s theorem [8, Theorem
5.9].

(ii)⇒ (iii) This is clear.

(iii)⇒ (iv) This follows from (i)⇒ (ii) of Proposition 3.9.

(iv) ⇒ (i) If T is any member of R, then |T | ≤ 4. Since any simple
graph on at most four vertices is planar, we obtain that Γ(T ) is planar.
As R is isomorphic to one of the rings from the collection R, we obtain
that Γ(R) is planar. �

In Theorem 3.11, we classify rings R such that G(R) is planar.

Theorem 3.11. Let R be a ring. The following statements are equi-
valent:

(i) G(R) is planar.
(ii) G(R) satisfies both (Ku∗1) and (Ku∗2).
(iii) G(R) satisfies (Ku1).
(iv) R is isomorphic to one of the rings from the collection E, where

E = {Z2 × Z2,Z2,Z3,Z4,
Z2[X]

X2Z2[X]
,F4}.

Proof. (i)⇒ (ii) This follows from Kuratowski’s theorem [8, Theorem
5.9].

(ii)⇒ (iii) This is clear.

(iii) ⇒ (iv) We are assuming that G(R) satisfies (Ku1). We know
from Lemma 2.1 that Γ(R) is a spanning subgraph of G(R). Hence,
Γ(R) satisfies (Ku1). Therefore, we obtain from Lemma ?? (ii) that
|Max(R)| ≤ 3. Suppose that |Max(R)| = 3. It follows from (iii) ⇒
(iv) of Theorem 3.2 that R ∼= Z2 × Z2 × Z2 as rings. Hence, we
obtain that R is a finite Boolean ring. We know from (ii) ⇒ (i) of
Proposition 2.4 that G(R) is complete. Therefore, ω(G(R)) = |R| =
8. Thus if G(R) satisfies (Ku1), then |Max(R)| ≤ 2. Suppose that
|Max(R)| = 2. Since Γ(R) satisfies (Ku1), we obtain from (i) ⇒ (ii)
of Proposition 3.3 that R is isomorphic to one of the rings from the

collection C = {Z2×Z2,Z2×Z3,Z2×Z4,Z2× Z2[X]
X2Z2[X]

}. We know from

the moreover part of Proposition 2.10 that ω(G(Z2×Z3)) = |Z2×Z3| =
6, and so, G(Z2 × Z3) does not satisfy (Ku1). Note that |U(Z2)| = 1,

|U(Z4)| = |U( Z2[X]
X2Z2[X]

)| = 2, and so, we obtain from Proposition 2.16

that ω(G(Z2 × Z4)) = ω(G(Z2 × Z2[X]
X2Z2[X]

)) = 2 + 1 + 2 + 2 = 7. Hence,
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G(Z2 × Z4) (respectively, G(Z2 × Z2[X]
X2Z2[X]

)) does not satisfy (Ku1).

Thus if G(R) satisfies (Ku1), then R ∼= Z2×Z2 as rings. Suppose that
|Max(R)| = 1. Since Γ(R) satisfies (Ku1), we obtain from (i) ⇒ (ii)
of Proposition 3.9 that R is isomorphic to one of the rings from the

collection {Z2,Z3,Z4,
Z2[X]

X2Z2[X]
,F4}. From the above given arguments, it

is clear that if G(R) satisfies (Ku1), then R is isomorphic to one of the

rings from the collection E = {Z2 × Z2,Z2,Z3,Z4,
Z2[X]

X2Z2[X]
,F4}.

(iv)⇒ (i) Let E be as in the statement (iv) of this theorem. If T ∈ E ,
then |T | ≤ 4. Since any simple graph on at most four vertices is planar,
we obtain that G(T ) is planar. As R is isomorphic to one of the rings
from the collection E , we get that G(R) is planar. �

Acknowledgments

We are thankful to the referee for many useful suggestions. We are also
thankful to Professor H. Ansari-Toroghy for the support.

References

1. D.D. Anderson and M. Naseer, Beck’s coloring of a commutative ring, J. Algebra
159(2) (1993), 500-514.

2. D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative
ring, J. Algebra 217(2)(1999), 434-447.

3. M.F. Atiyah and I.G. Macdonald, Introduction to Commutative Algebra,
Addison-Wesley, Reading, Massachusetts, 1969.

4. R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory Universitext,
Springer, 2000.

5. I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), 208-226.

6. M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings
I, J. Algebra Appl. 10 (4) (2011), 727-739.

7. M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings
II, J. Algebra Appl. 10 (4) (2011), 741-753.

8. N. Deo, Graph Theory with applications to Engineering and Computer Science,
Prentice Hall of India Private Limited, New Delhi, 1994.

9. R. Gilmer, Multiplicative Ideal Theory, Marcel-Dekker, New York, 1972.

10. . M.I. Jinnah and S.C. Mathew, When is the comaximal graph split?, Comm.
Algebra 40 (7) (2012), 2400-2404.

11. J. Lambek, Lectures on rings and modules, Blaisdell Publishing Company, Mas-
sachusetts, 1966.

12. H.R. Maimani, M. Salimi, A. Sattari, and S. Yassemi, Comaximal graph of
commutative rings, J. Algebra 319 (2008), 1801-1808.



82 VISWESWARAN AND PAREJIYA

13. K. Samei, On the comaximal graph of a commutative ring, Canad. Math. Bull.
57 (2) (2014), 413-423.

14. P.K. Sharma and S.M. Bhatwadekar, A note on graphical representation of
rings, J. Algebra 176 (1995), 124-127.

S. Visweswaran
Department of Mathematics, Saurashtra University, Rajkot, India.
Email: s visweswaran2006@yahoo.co.in

J. Parejiya
Department of Mathematics, Saurashtra University, Rajkot, India.
Email: parejiyajay@gmail.com


	1. Introduction
	2. Some basic properties of G(R)
	3. On the planarity of G(R)
	References

