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Abstract. In this paper an exponentially fitted finite difference method is
presented for solving singularly perturbed two-point boundary value prob-
lems with the boundary layer. A fitting factor is introduced and the model
equation is discretized by a finite difference scheme on an uniform mesh.
Thomas algorithm is used to solve the tri-diagonal system. The stability
of the algorithm is investigated. It is shown that the proposed technique is
of first order accurate and the error constant is independent of the pertur-
bation parameter. Several problems are solved and numerical results are
presented to support the theoretical error bounds established.
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1 Introduction

Singularly perturbed boundary value problems often arise in applied sci-
ences and engineering, typical examples include high Reynolds number
flow in fluid dynamics, modelling the problems in mathematical biology
and semi-conductor devices where the edge effects are important. These
problems depend on a small positive parameter ε known as the singular
perturbation parameter. These problems have been received a significant
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amount of attention in past and recent years. A well known fact is that
the solution of such problems display sharp boundary or interior layers
when ε is very small, i.e., the solution varies rapidly in some parts and
varies slowly in some other parts. Typically there are thin transition lay-
ers where the solutions can jump abruptly, while away from the layers the
solution behaves regularly and vary slowly. So the treatment of singularly
perturbed problems present severe difficulties that have to be addressed
to ensure accurate numerical solutions. Thus more efficient but simpler
computational techniques are required to solve singular perturbation prob-
lems. For a good analytical discussion on singular perturbation, one may
refer the books: Doolan et. al. [4], Bender et. al. [2], Kevorkian and
Cole [10], O’Malley [14]. Also, for some numerical methods and their con-
vergence analysis, one may refer to recent books: Farrell et. al. [5], Miller
et. al. [11], Roos et. al. [18], Shishkin et. al. [19] and the references
therein. In the articles [1, 3, 6–8, 15, 20], many researchers have followed
different numerical approaches combining fitted mesh methods and fitted
operator methods for solving singular perturbation problems where as [9]
gives an erudite outline on the numerical methods for singular perturbation
problems. In [12,13,16] efficient numerical methods are used for singularly
perturbed differential equations with a delay (or shift) term. Recently,
Reddy et. al [17] have developed an exponential finite difference method
for solving model equation of the form (1). But Most of these available
numerical techniques are constructed on fitted operator techniques or by
the use of reasonable apriori information about the solutions which is a
limitation of this kind of approach.

In this paper, we introduce a simple exponentially fitted finite difference
method for solving singularly perturbed two-point boundary value problems
with the boundary layer at one end (left or right) point. A fitting factor
is introduced and the model equation is discretized by a finite difference
scheme on an uniform mesh. Thomas algorithm is used to solve the tri-
diagonal system. The stability of the algorithm is investigated. Several
linear and nonlinear problems are solved to demonstrate the applicability
of the method. It is observed that the present method approximates the
exact solution very well.

The rest of the paper is organized as follows: Section 2 recalls pertinent
properties of the solution y(x) of (1). In Section 3, we describe the finite
difference scheme, followed by a brief discussion on Thomas algorithm and
its stability analysis. We discuss the convergence analysis of the numerical
solution obtained by the exponential scheme in Section 4. Finally, Section
5 gives some numerical examples that confirm the theoretical error esti-



On the singularly perturbed second order ODE 35

mates. Also, we apply the proposed scheme on some nonlinear problems
and problems with right end boundary layer.

Throughout this paper C denotes a generic positive constant indepen-
dent of the grid points xj and the parameters ε and N (the number of
mesh intervals) which can take different values at different places, even in
the same argument. A subscripted C (i.e., C1) is a constant that is inde-
pendent of ε and of the nodal points xj, but whose value is fixed. Whenever
we write φ = O(ψ), we mean that |φ| ≤ C|ψ|. To simplify the notation,
we set gj = g(xj) for any function g, while gNj denotes an approximation

of g at xj. Also, we assume that ε ≤ CN−1 as is generally the case of dis-
cretization of convection-diffusion problems. It is worthwhile to mention
that this assumption is not a restriction in practical situation.

2 Continuous Problem

In this article, we consider the following singularly perturbed boundary
value problem (SPBVP):

{
Ly(x) ≡ εy′′(x) + a(x)y′(x) + b(x)y(x) = f(x), x ∈ Ω = (0, 1),

B0 ≡ y(0) = α, B1 ≡ y(1) = β,
(1)

where 0 < ε ≪ 1 is a small singular perturbation parameter, the func-
tions a(x), b(x), f(x) are sufficiently smooth and α, β are given constants.
Further, we assume that a(x) ≥ 2M > 0 and b(x) ≤ 0. Under these as-
sumptions, the above problem (1) has a unique solution which exhibits a
boundary layer at x = 0.

From the theory of singular perturbations ( [14]) and using Taylor’s
series expansion for a(x) about x = 0 and restriction to their first terms,
we get

y(x) = y0(x) + (α− y0(0)) exp

(
− a(0)

ε
x

)
+O(ε), (2)

where y0(x) is the solution of the reduced problem of (1), given by

a(x)y′0(x) + b(x)y0(x) = f(x) with y0(1) = β. (3)

First, the interval [0, 1] is divided into N equal number of subintervals, each
of length h. Let 0 = x0 < x1 < x2 < · · · < xN = 1 be the points such that
xi = ih for i = 0, 1, · · · , N. From (2) as h→ 0, we have

lim
h→0

y(ih) = y0(0) + (α− y0(0)) exp
(
− a(0)

ε
ih
)
. (4)
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Let ρ = h
ε
. Now the equation becomes

lim
h→0

y(ih) = y0(0) + (α− y0(0)) exp
(
− iρa(0)

)
. (5)

Now introducing an exponentially fitting factor σ(ρ) in (1), we get

εσ(ρ)y′′(x) + a(x)y′(x) + b(x)y(x) = f(x), (6)

with boundary conditions B0 ≡ y(0) = α, and B1 ≡ y(1) = β. The fitting
factor σ(ρ) is to be determined in such a way that the solution of (6)
converges uniformly to the solution of (1).

Lemma 1. (Maximum Principle) Let v be a smooth function satisfying
v(0) ≥ 0, v(1) ≥ 0 and Lv(x) ≤ 0, ∀x ∈ Ω, then v(x) ≥ 0, ∀x ∈ Ω.

Proof. We can prove the above lemma by method of contradiction. Let
x∗ ∈ Ω be such that v(x∗) = min v(x), x ∈ Ω and assume that v(x∗) < 0.
Clearly x∗ /∈ {0, 1} and v′(x∗) = 0 and v′′(x∗) ≥ 0. Now consider

Lv(x∗) ≡ εv′′(x∗) + a(x∗)v′(x∗) + b(x∗)v(x∗) > 0

which is a contradiction to our assumption. Hence v(x) ≥ 0,∀x ∈ Ω.

An immediate consequence of the maximum principle is the following
stability estimate.

Lemma 2. If u is the solution of the boundary value problem (1), then

‖u‖ ≤ M−1‖f‖+max{|α|, |β|}. (7)

Proof. Consider the following barrier function

ψ±(x) =

[(
1− x

M

)
‖f‖+max

{
|α|, |β|

}]
± u(x).

It is easy to check that ψ±(x) ≥ 0 at x = 0, 1. Now from (1)

Lψ±(x) = ε
(
ψ±(x)

)′′
+ a(x)

(
ψ±(x)

)′
+ b(x)ψ±(x)

=
−a(x)
M

‖f‖+ b(x)

[(
1− x

M

)
‖f‖+max{|α|, |β|}

]
± Lu(x)

≤
[
− ‖f‖ ± f(x)

]
+ b(x)

[(
1− x

M

)
‖f‖+max{|α|, |β|}

]
≤ 0.

Thus by applying the maximum principle (Lemma 1), we can conclude that
ψ±(x) ≥ 0,∀x ∈ Ω, which is the required result.
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Lemma 3. The solution u(x) and its derivatives of the BVP (1) satisfy
the following bounds:

|u(k)(x)| ≤ C

(
1 + ε−k exp(−Mx/ε)

)
, k = 0, 1, 2, 3, x ∈ Ω. (8)

Proof. One can prove this lemma by following the method of proof as given
in [11].

3 Discrete Problem

Consider the difference approximation of (1) on a uniform grid Ω
N

=
{xj}Nj=0 and denote h = xj+1 − xj. For a mesh function Zj, we define
the following difference operators:

D+Zj =
Zj+1 − Zj

h
, D−Zj =

Zj − Zj−1

h
,

D0Zj =
Zj+1 − Zj−1

2h
, D+D−Zj =

Zj+1 − 2Zj + Zj−1

h2
.

The upwind finite difference scheme for (6) takes the form

{
εσ(ρ)D+D−y(xi) + a(xi)D

0y(xi) + b(xi)y(xi) = f(xi) , 1 ≤ i ≤ N − 1,

y0 = y(x0) = α, yN = y(xN ) = β .

(9)
Using the above difference operators, we have

LNy(xi) =





εσ(ρ)
y(xi+1)− 2y(xi) + y(xi−1)

h2
+ a(xi)

y(xi+1)− y(xi−1)

2h
+

+b(xi)y(xi) = f(xi), 1 ≤ i ≤ N − 1,

y0 = y(x0) = α, yN = y(xN ) = β .
(10)

Multiplying (10) by h and taking the limit h→ 0, we get

lim
h→0

σ(ρ)

ρ

(
y(xi+1)− 2y(xi) + y(xi−1)

)
+
a(xi)

2

(
y(xi+1)− y(xi−1)

)
= 0,

(11)
where f(xi) − b(xi)y(xi) is bounded. Substituting (4) in (11) and then
simplifying, we get

σ(ρ) =
σa(0)

2
coth

[
σa(0)

2

]
. (12)
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Hence, (9) takes the form

{
σ(ρ)y′′(xi) + p(xi)D

0y(xi) + q(xi)y(xi) = r(xi) , 1 ≤ i ≤ N − 1,

y0 = y(x0) = α, yN = y(xN ) = β ,

(13)
where p(x) = a(x)/ε, q(x) = b(x)/ε, r(x) = f(x)/ε.

Let δ be a small deviating argument such that 0 < δ ≪ 1. By us-
ing Talylor’s expansion about the point x = xi up to the second order
approximation, we have

y(xi − δ) = y(xi)− δy′(xi) +
δ2

2
y′′(xi).

Therefore, we have

y′′(xi) =
2

δ2
[y(xi − δ) − y(xi) + δD+y(xi)].

So from (13), we have

2σ(ρ)[y(xi−δ)−y(xi)+δD+y(xi)]+δ
2p(xi)D

0y(xi)+δ
2q(xi)y(xi) = δ2r(xi) .

(14)
But from Taylor series expansion about the point x = xi, we have

y(xi − δ) ≈ y(xi)− δy′(xi) = y(xi)− δD−y(xi).

Substituting the above in (14), we get a three term recurrence relation as
follows:

Eiyi−1 + Fiyi +Giyi+1 = Hi , 1 ≤ i ≤ N − 1, (15)

where

Ei =
2σ(ρ)

h
− δp(xi)

2h
, Fi =

−4σ(ρ)

h
+ δq(xi),

Gi =
2σ(ρ)

h
+
δp(xi)

2h
, Hi = δr(xi).

Now (15) gives a system of N − 1 equations with N − 1 unknowns from y1
to yN−1 where y(xi) = yi. To solve the tri-diagonal system, we use Thomas
algorithm. A brief discussion on Thomas algorithm is as follows:

Thomas algorithm: A brief discussion on Thomas algorithm for solving
the tri-diagonal system (15) is given below:
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Consider the tri-diagonal system (15) with the boundary conditions. In
Thomas algorithm, we set a recurrence relation

yi =Wi yi+1 + Ti , for i = N − 2, N − 1, · · · , 1, (16)

where Wi = W (xi) and Ti = T (xi) are to be determined. For i = 0, we
get y0 = W0y1 + T0, but from boundary conditions, we already know that
y0 = α. So by comparing the coefficients, we get W0 = 0 and T0 = α.
Again from (16), we have

yi−1 =Wi−1 yi + Ti−1 , for i = N − 2, N − 1, · · · , 1. (17)

Substituting (17) in (15), we get

Ei[Wi−1 yi + Ti−1] + Fiyi +Giyi+1 = Hi , (18)

and on simplifying, we obtain

yi =
−Gi

Fi + EiWi−1
yi+1 +

Hi − EiTi−1

Fi + EiWi−1
. (19)

Comparing (16) and (19), we get

Wi =
−Gi

Fi + EiWi−1
, Ti =

Hi − EiTi−1

Fi +EiWi−1
.

with the initial conditions W0 = 0 and T0 = α. Now, we can calculate
Wi, Ti and hence using the value yn = β, we can get the values of yi for
i = N − 2, N − 1, · · · , 1.

3.1 Stability analysis

By stability, we mean that the error committed at one stage is not prop-
agated into larger to the later stage. Suppose a small error ei−1 has been
made in calculating Wi−1 given above. Now W i−1 = Wi−1 + ei−1 and we
want to calculate W i−1. So

ei =
Gi

Fi − Ei(Wi−1 + ei−1)
− Gi

Fi − EiWi−1

=
GiEiei−1

(Fi − Ei(Wi−1 + ei−1))(Fi −EiWi−1)
=
W 2

i Ei

Gi

ei−1.

From the assumption made earlier that a(x) > 0, b(x) ≤ 0, so |Ei| ≤ |Gi|.
Now by the condition |Wi| < 1, i = 1, 2, · · · , N − 1, it follows that |ei| =
|Wi|2

|Ei|
|Gi|

|ei−1| < |ei−1|. Hence, the stability is guaranteed.
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Lemma 4. (Discrete comparison principle): Assume that the mesh func-
tion V (xi) satisfies V (x0) ≥ 0 and V (xN ) ≥ 0. If LNV (xi) ≤ 0 for
1 ≤ i ≤ N − 1, then V (xi) ≥ 0 for 0 ≤ i ≤ N .

Proof. Let us choose k such that V (xk) = minV (xi), 1 ≤ i ≤ N − 1. If
V (xk) ≥ 0, then there is nothing to prove. It is obvious that V (xk+1) −
V (xk) ≥ 0 and V (xk)− V (xk−1) ≤ 0. Now from (10), we have

LNV (xk) = εσ(ρ)
V (xk+1)− 2V (xk) + V (xk−1)

h2

+a(xk)
V (xk+1)− V (xk−1)

2h
+ b(xk)V (xk) ≥ 0,

which contradicts LNV (xi) ≤ 0. Hence, our assumption is wrong.

4 Convergence Analysis

The following theorem shows the ε-uniform convergence of the proposed
scheme.

Theorem 1. Let y and Y be respectively the exact solution of (1) and the
discrete solution of (13) respectively. Then, for sufficiently large N , we
have the following ε–uniform error estimate:

sup
0<ε≤1

‖y − Y ‖ ≤ CN−1(lnN)2, x ∈ Ω (20)

Proof. First, let us decompose the solution y(x) of (1) into regular and
singular parts as follows: y(x) = r(x) + s(x). Now for 0 ≤ k ≤ 3, the
regular component r(x) satisfies

|rk(x)| ≤ C[1 + ε2−ke(x, a)], ∀x ∈ [0, 1]. (21)

and the singular component s(x) satisfies

|sk(x)| ≤ Cε−ke(x, a), ∀x ∈ [0, 1]. (22)

where e(x, a) = e1(x, a) + e2(x, a) = exp(−a0x
ε

) + exp(−a0(1−x)
ε

).(for details
see [11]).

Similarly, decompose the discrete solution Y of the problem (13) into
regular (Rε) and singular (Sε) components. Thus Y (x) = Rε(x) + Sε(x)
where Rε and Sε are respectively the solution of the following problems:

LNRε = f(x), Rε(0) = r(0), Rε(1) = r(1),
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and

LNSε = 0, Sε(0) = s(0), Sε(1) = s(1),

Thus y(x) − Y (x) = [r(x) − Rε(x)] + [s(x) − Sε(x)] and the error can
be estimated as

‖y(x)− Y (x)‖ ≤ ‖r(x)−Rε(x)‖+ ‖s(x)− Sε(x)‖.

Now we need to calculate the errors in the regular and singular components
separately.

Let us first calculate the error in the regular component. Consider the
local truncation error defined as follows:

LN (Rε(x)− r(x)) = (L− LN )r(x) = f(x)− LN (r(x))

= ε(D2 −∆2)r(x) + a(x)(D −D0)r(x). (23)

Using Taylor’s series expansion and neglecting higher order terms from
fourth order, we get the following expansions for y(xi + h) and y(xi − h):

y(xi ± h) = y(xi)± hy′(xi) +
h2

2
y′′(xi)±

h3

6
y′′′(ξ

(i)
1 ),

where (ξ
(i)
1 ), (ξ

(i)
1 ) ∈ (xi−1, xi+1). Simplifying the above two expressions,

we can easily show that

(∆2y)(xi) = y′′(xi)−
h

6

[
y′′′(ξ

(i)
1 )− y′′′(ξ

(i)
2 )

]
.

So, ‖(∆2− d2

dx2 )y(xi)‖ ≤ C‖y′′′‖, where ‖y′′′‖ = sup
xi∈(x0,xN )

|y′′′(xi)|. Similarly

by Taylor’s series expansion up to the second order terms we get

‖(D0 − d

dx
)y(xi)‖ ≤ C‖y′′‖.

Now using the bounds of rk(x), sk(x) and the assumption ε ≤ CN−1, the
equation (23) reduces to

‖LN (Rε − r)(xi)‖ ≤ CN−1. (24)

Hence, using the discrete maximum principle (Lemma 4), we get

‖(Rε − r)‖ ≤ CN−1. (25)
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Now we need to find out the error in the singular component. The local
truncation error in the singular component is bounded in the standard way
as done for the regular part and is given by

‖LN (Sε − s)(xi)‖ ≤ Cε−2N−1.

Choose a constant K such that Kε lnN ≥ 1
4 , i.e., ε

−1 ≤ 4K lnN. So from
above inequality, we have

‖LN (Sε − s)(xi)‖ ≤ CN−1(lnN)2.

Now again using the discrete comparison principle, we reach at

‖(Sε − s)‖ ≤ CN−1(lnN)2. (26)

Finally, combining (25) and (26), we get our desired result.

5 Numerical Results and discussions

To demonstrate the applicability of the method, we have applied the pro-
posed scheme on several singular perturbation problems with left boundary
layers. These examples are widely discussed in the literature. The exact
solutions or sometimes uniformly valid approximate solutions are used for
comparison purpose.

Example 1. Consider the homogeneous problem

{
εy′′(x) + y′(x)− y(x) = 0, x ∈ (0, 1),

y(0) = 1, y(1) = 1.

The exact solution is given by

y(x) =
(exp(m2)− 1) exp(m1x)− (1− exp(m1)) exp(m2x)

exp(m2)− exp(m1)
,

where m1,2 =
−1±

√
1 + 4ε

2ε
. This BVP has a boundary layer in the left

end at x = 0.

Example 2. Consider the non-homogeneous singular perturbation prob-
lem {

εy′′(x) + y′(x) = 1 + 2x, x ∈ (0, 1),

y(0) = 0, y(1) = 0.
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Table 1: Maximum point-wise errors EN
ε and the rate of convergence rNε

for Example 1.

ε Number of intervals N

16 32 64 128 256 512

1e− 2 7.5846e-3 3.8548e-3 1.9127e-3 9.2632e-4 4.5732e-4 2.1879e-4

0.9764 1.0110 1.0461 1.0183 1.0637

1e− 4 1.1136e-2 5.6347e-3 2.8189e-3 1.3953e-3 6.8264e-4 3.2347e-4

0.9829 0.9994 1.0144 1.0366 1.0743

1e− 8 1.1173e-2 5.6771e-3 2.8563e-3 1.4326e-3 7.1795e-4 3.6449e-4

0.9783 0.9896 0.9959 0.9979 0.9939

EN 1.1173e-2 5.6771e-3 2.8563e-3 1.4326e-3 7.1795e-4

rN 0.9783 0.9896 0.9959 0.9979 0.9939

The exact solution y(x) is of the form

y(x) = x(1 + x− 2ε) +
(2ε − 1)(1 − exp(−x/ε))

1− exp(−1/ε)
.

The above problem has a boundary layer at the left side of the domain near
x = 0.

For any value of N and ε, we calculate the exact maximum point-
wise errors EN

ε and the corresponding rates of convergence by EN
ε =

max
0≤j≤N

|y(xj)−Y N
j | and rNε = log2

(
EN

ε

E2N
ε

)
, where u is the exact solu-

tion and UN
j is the numerical solution obtained by using N mesh intervals

in the domain Ω
N
. Now we would like to see uniform error and rate of

convergence as EN = max
0≤ε≤1

EN
ε and rN = log2

(
EN

E2N

)
.

5.1 Right end boundary layer problem

Finally, we consider the following singularly perturbed boundary value
problem with right end boundary layer:

{
Ly(x) ≡ −εy′′(x) + a(x)y′(x) + b(x)y(x) = f(x), x ∈ Ω = (0, 1),

B0 ≡ y(0) = α, B1 ≡ y(1) = β,

(27)
where 0 < ε ≪ 1 is a small singular perturbation parameter, the func-
tions a(x), b(x), f(x) are sufficiently smooth and α, β are given constants.
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Table 2: Maximum point-wise errors EN
ε and the rate of convergence rNε

for Example 2.

ε Number of intervals N

16 32 64 128 256 512

1e− 2 4.3216e-2 2.3764e-2 1.2108e-3 6.0325e-4 2.9892e-4 1.4375e-4

0.8628 0.9728 1.0053 1.0130 1.0566

1e− 4 5.8414e-2 3.0087e-2 1.5169e-3 7.5535e-3 3.6920e-3 1.7547e-3

0.9574 0.9862 1.0074 1.0326 1.0773

1e− 8 5.8591e-2 3.0274e-2 1.5389e-2 7.7512e-3 3.8923e-3 1.94967e-3

0.9527 0.9768 0.9886 0.9942 0.9974

EN 5.8591e-2 3.0274e-2 1.5389e-2 7.7512e-3 3.8923e-3

rN 0.9527 0.9768 0.9886 0.9942 0.9974

Further, we assume that a(x) ≥ 2M > 0 and b(x) ≥ 0. Under these as-
sumptions, the above problem (27) has a unique solution which exhibits a
boundary layer at x = 1.

Using Taylor series expansion for a(x) near the point x = 1, we get

y(x) = y0(x) + (β − y0(1)) exp

(
− a(1)(1 − x)

ε

)
, (28)

where y0(x) is the solution of the reduced problem of (27) which is given
by a(x)y′0(x) + b(x)y0(x) = f(x) with y0(0) = α. As h → 0, we have the

following limit lim
h→0

y(ih) = y0(0)+(β−y0(1)) exp
(
− a(1)(1 − ih)

ε

)
, which

becomes

lim
h→0

y(ih) = y0(0) + (β − y0(1)) exp(a(1)(1/ε − iρ)), (29)

where ρ = h
ε
. Introducing an exponentially fitting factor σ(ρ) in (27), we

get

− εσ(ρ)y′′(x) + a(x)y′(x) + b(x)y(x) = f(x), (30)

with boundary conditions B0 ≡ y(0) = α, and B1 ≡ y(1) = β. On simpli-
fying, we get

σ(ρ) =
σa(1)

2
coth

[
σa(1)

2

]
.

Now we can use the finite difference scheme and the techniques discussed
for the left end boundary layer problem. Finally, we will reach at a three
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term recurrence relation as follows:

Êiyi−1 + F̂iyi + Ĝiyi+1 = Ĥi , 1 ≤ i ≤ N − 1, (31)

where

Êi = −2σ(ρ)

h
− δp(xi)

2h
, F̂i =

4σ(ρ)

h
+ δq(xi),

Ĝi = −2σ(ρ)

h
+
δp(xi)

2h
, Ĥi = δr(xi).

Now (31) gives a system of N − 1 equations with N − 1 unknowns from y1
to yN−1 where y(xi) = yi. Hence, we can use Thomas algorithm to solve
the tri-diagonal system.

Example 3. Consider the following singular perturbation problem:

{
−εy′′(x) + y′(x) + (1 + ε)y(x) = 0, x ∈ (0, 1),

y(0) = 1 + exp(−1+ε
ε
), y(1) = 1 + 1/e.

Here, y(x) is of the form y(x) = e(1+ε)(x−1

ε
) + ex. and has a boundary layer

at the right side of the domain near x = 1. The numerical results are shown
in Table 3.

Table 3: Maximum point-wise errors EN
ε and the rate of convergence rNε

for Example 3.

ε Number of intervals N

16 32 64 128 256 512

1e− 4 1.1143e-2 5.6345e-3 2.8197e-3 1.3958e-3 6.8346e-4 3.2758e-4

0.9836 0.9998 1.016 1.0308 1.0631

1e− 8 1.1141e-2 5.6343e-3 2.8192e-3 1.3955e-3 6.8342e-4 3.2754e-4

0.9835 0.9989 1.014 1.0303 1.0625

EN 1.1141e-2 5.6343e-3 2.8192e-3 1.3955e-3 6.8342e-4

rN 0.9835 0.9989 1.014 1.0303 1.0625

6 Conclusion

An efficient exponentially fitted finite difference scheme for a class of singu-
larly perturbed BVPs of the form (1) with left (or right) boundary layers is
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presented in this paper. A comparatively simple fitting factor is introduced
and the solution thus obtained through a tri-diagonal system. We carried
out the error analysis and numerical results obtained for some examples
show that the proposed scheme is of almost first-order accurate up to an
logarithm factor. Hence, the key result established here is that the solu-
tion thus obtained is uniformly convergent with respect to the perturbation
parameter.
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