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Abstract. In this paper, an algorithm based on the Drazin generalized
conjugate residual (DGMRES) algorithm is proposed for computing the
group-inverse solution of singular linear equations with index one. Numeri-
cal experiments show that the resulting group-inverse solution is reasonably
accurate and its computation time is significantly less than that of group-
inverse solution obtained by the DGMRES algorithm.
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1 Introduction

Consider the linear system

Ax = b, (1)

where A ∈ CN×N is a singular matrix and ind(A) is arbitrary. Here ind(A),
the index of A is the size of the largest Jordan block corresponding to the
zero eigenvalue of A. We recall that the Drazin-inverse solution of (1) is the
vector ADb, where AD is the Drazin-inverse of the singular matrix A. For
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the Drazin-inverse and its properties, we refer to [2] or [5]. In the important
special case k = 1, this matrix is called the group inverse of A and denoted
by A].

The Drazin-inverse has various applications in the theory of finite Markov
chains [5], the study of singular differential and difference equations [5], the
investigation of Cesaro-Neumann iterations [9], cryptography [8], iterative
methods in numerical analysis [6, 7], multibody system dynamics [13] and
others.

It is well known that the representations of the Drazin (group) inverse
of matrices are very important not only in matrix theory, but also in singu-
lar differential and difference equations, probability statistical, numerical
analysis, game theory, econometrics, control theory and so on [2, 5], and
also singular systems with index one arise naturally in Markov chain mod-
elling [3, 11].

The problem of finding the solution of the form ADb for (1) is very com-
mon in the literature and many different techniques have been developed in
order to solve it. In [14], Sidi proposed a general approach to Krylov sub-
space methods for computing Drazin-inverse solution. And then, he gave
several Krylov subspace methods of Arnoldi, the Drazin generalized con-
jugate residual (DGCR) and Lancoze types. Moreover in [15, 16], Sidi has
continued to drive two Krylov subspace methods for computing ADb. One is
DGMRES method, which is implementation of the DGCR method for sin-
gular systems that is analogues to GMRES for non-singular systems. The
other one is the Drazin biconjugate gradient algorithm (DBI-CG) which is
Lanczos type algorithm. DGMRES, just like, GMRES method, is a stable
numerically and economical computationally and storage wise. DBI-CG
method, also just like the biconjugate gradient (BI-CG) for non–singular
systems, is a fast algorithm, but when we need a high accuracy, the algo-
rithm is invalid. In the present paper, we develop the group generalized
minimal residual (GGMRES) algorithm which is another implementation
of DGMRES, for solving the singular linear system (1) with ind(A) = 1.
By numerical examples, we show that the computation time of GGMRES
algorithm is substantially less than that of DGMRES algorithm.

The paper is organized as follows. In Section 2, we will give a review of
DGMRES. In Section 3, we will derive the GGMRES algorithm. In Section
4 the results of some numerical examples are given. Section 5 is devoted to
concluding remarks.
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2 DGMRES algorithm

DGMRES method is a Krylov subspace method for computing the Drazin–
inverse solution of consistent or inconsistent linear systems (1) [14, 16]. In
this method, there is no restriction on the matrix A. Thus, in general,
A is non-Hermitian, a := ind(A) is arbitrary, and the spectrum of A can
have any shape. DGMRES starts with an initial vectors x0 and generates
a sequence of vectors x0, x1, . . ., as

xm = x0 +
m−a∑
i=1

ciA
a+i−1r0, r0 = b−Ax0.

Then

rm = b−Axm = b−
m−a∑
i=1

ciA
a+ir0.

The Krylov subspace we will use is

Km−a{A;Aar0} = span{Aar0, Aa+1r0, . . . , A
m−1r0}.

The vector xm produced by DGMRES satisfies

‖Aarm‖ = min
x∈x0+Km−a{A;Aar0}

‖Aa(b−Ax)‖2. (2)

As xm = x0 +
∑m−a

i=1 ciA
a+i−1r0, we start by orthogonalizing the krylov

vectors Aar0, A
a+1r0, . . . , using the Arnoldi–Gram–Schmidt process, see

[1, 12], carried out numerically like the modified Gram–Schmidt process:

• For i = 1, 2, . . . , do

• Compute hji = (vj , Aυi), j = 1, 2, . . . , i.

• Compute v̂i = Avi −
∑i

j=1 vjhji.

• Let hi+1,i = ‖v̂i‖2 and set vi+1 = v̂i/hi+1,i.

• EndDo

Consequently, we have a set of orthonormal vectors v1, v2, . . . , that satisfies

Avi =
i+1∑
j=1

vjhji, i = 1, 2, . . . , (3)

as long as i ≤ q − 1, where q is the degree of the minimal polynomial of A
with respect to Aar0, hence with respect to v1. Furthermore, for each k,

span{v1, v2, . . . , vk} = span{Aar0,A
a+1 r0, . . . ,A

k+a−1 r0} = Kk(A; Aar0).
(4)
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If we now define the N × k matrix V̂k by

V̂k = [v1|v2| . . . |vk], k = 1, 2, . . . , (5)

then, for m ≤ m0 (for definition of m0 see [14] and [16]), we can write

xm = x0 + V̂m−aξm, for some ξm ∈ Cm−a (6)

where we need to determine ξm. Since rm = r0 +AV̂m−aξm, we have

Aarm = Aar0 +Aa+1V̂m−aξm = βv1 −Aa+1V̂m−aξm. (7)

Next, provided k ≤ q − 1, from (3) we can write

AV̂k = V̂k+1H̄k, H̄k =



h11 h12 · · · · · · h1k
h21 h22 · · · · · · h2k

0 h32
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . hkk
0 · · · · · · 0 hk+1,k


. (8)

Note that H̄k ∈ C(k+1)×k and H̄k has full rank when k ≤ q−1 [16]. Now, by
using (7), (8), and V̂ ∗m+1V̂m+1 = I(m+1)×(m+1) we can reduce the n×(m−a)
least squares problem of (2) to the (m+ 1)× (m−a) least squares problem

‖Aarm‖ = ‖V̂m+1(βe1 − Ĥmξm)‖ (9)

= min
ξ∈Cm−a

‖V̂m+1(βe1 − Ĥmξ)‖

= min
ξ∈Cm−a

‖βe1 − Ĥmξ‖,

where

Ĥm = H̄mH̄m−1 . . . H̄m−a, (10)

and Ĥm ∈ C(m+1)×(m−a). In general, the value of n is very large andm� n,
which implies that the problem in (9) is very small. The minimization
problem (9) is accomplished by using the QR decomposition of Ĥm. For
more details we refer the reader to [14] and [16].

We now summarize the steps of DGMRES for the solution (1) where
a = ind(A) is known.



GGMRES: A GMRES–type algorithm for singular systems 5

Algorithm 1 DGMRES algorithm

1. Pick x0 and compute r0 = b−Ax0 and Aar0.
2. Compute β = ‖Aar0‖ and set v1 = β−1(Aar0).
3. Orthogonalize the Krylov vectors Aar0, A

a+1r0, . . . , via the Arnoldi-
Gram-Schmidt process carried out like the modified Gram-Schmidt pro-
cess:

For i = 1, 2, . . . , do
Compute hij = (vj , Avi), j = 1, 2, . . . , i.
Compute v̂i = Avi −

∑i
j=1 vjhij .

Let hi+1,i = ‖v̂i‖ and set vi+1 = v̂i/hi+1,i.
4. EndDo
5. For k = 1, 2, . . . , form the matrices V̂k ∈ CN×k and H̄k ∈ C(k+1)×k

as defined in (5) and (8), respectively.
6. For m = a+ 1, ..., form the matrix Ĥm = H̄mH̄m−1 . . . H̄m−a.
7. Compute the QR factorization of Ĥm : Ĥm = QmRm;Qm ∈

C(m+1)×(m−a) and Rm ∈ C(m−a)×(m−a).
8. Solve the (upper triangular) system Rmξm = β(Q∗me1), where e1 =

[1, 0, . . . , 0].
9. Compute xm = x0 + V̂m−aξm (then ‖Aarm‖ = β

√
1− ‖Q∗me1‖2).

10. Compute ‖Aarm‖ = β
√

1− ‖Q∗me1‖2.

3 GGMRES algorithm

In this section, we develop a new implementation of the DGMRES algo-
rithm for the case ind(A) = 1.

Let H̄
(m)
i� and H̄

(m)
�j represent the row i and the column j of H̄m, re-

spectively. By partitioning H̄m and Ĥm = H̄mH̄m−1 as

H̄m =

[
H̄

(m)
1�
R̄m

]
and Ĥm =

[
dTm
Fm

]
, (11)

respectively, where R̄m is an m × m upper triangular matrix, Fm is an
m× (m− 1) upper Hessenberg matrix, and dTm ∈ R1×(m−1), we see that

dT2 = H̄
(2)
1� H̄

(1)
�1 , dTm+1 = (dTm|H̄

(m+1)
1� H̄

(m)
�m ), m = 2, 3, . . . (12)

and
F2 = R̄2H̄

(1)
�1 , Fm+1 = (F̃m|R̄m+1H̄

(m)
�m ), m = 2, 3, . . . (13)

where

F̃m =

[
Fm
0

]
.
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If m steps of the Arnoldi process have been taken and V̂m+1, the Arnoldi
basis associated with DGMRES is of full rank, then Fm is of full rank. This
result follows from the fact that for the elements ĥi+2,i, i = 1, 3, . . . ,m− 1,
of Ĥ, we have

ĥi+2,i = h̄i+2,i+1h̄i+1,i 6= 0.

In what follows we suppose that Fm is of full rank.
In order to get the solution ξm of the least squares problem (9), we can

consider the normal equation

ĤT
mĤmξm = βĤT

me1. (14)

The use of (11) implies that(
dmd

T
m + F TmFm

)
ξm = βĤT

me1 = βdm.

Let

λm = β − dTmξm, (15)

then, we have
F TmFmξm = λmdm. (16)

By assumption, Fm is of full rank and λm = 0 implies that ξm = 0, which
is not the desired solution. Therefore, λm must be nonzero. By defining

um =
ξm
λm

, (17)

the equation (16) can be written as

F TmFmum = dm. (18)

For solving this positive definite system, we form the QR factorization

QmFm =

[
Rm
o

]
,

where Rm is an (m− 1)× (m− 1) nonsingular upper triangular matrix and
Q ∈ Rm×m is an unitary matrix. This gives the following equation:

RTmRmum = dm. (19)

With setting zm = Rmum, the vector um can be computed by solving
the lower and upper triangular systems RTmzm = dm and Rmum = zm,
respectively.
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From (19), we have uTmdm = ‖Rmum‖2 ≥ 0. So, the relations (15) and
(17) imply that

λm =
β

1 + dTmu
> 0 and ξm = λmum, (20)

which can be used for computing λm and ξm.

We note that Fm+1 can be obtained as a simple update of Fm by first
appending a row of zeros at the bottom of Fm and following that by ap-

pending the (m + 1)-vector R̄m+1H̄
(m)
�m as the mth column. After forming

Fm, for obtaining Rm, we can factorize Fm by appling a series of Givens
rotations to the columns of Fm.

Now, we show that the norm ‖Arm‖ can be obtained without actually
having to form xm and rm. From (9) and (11) there holds

‖Arm‖22 = ‖βe1 − Ĥmξm‖22
= ‖βe1 −

[
dTm
Fm

]
ξm‖22

=

∥∥∥∥[ β − dTmξm−Fmξm

]∥∥∥∥2
2

=

∥∥∥∥[ λm
−λmFmum

]∥∥∥∥2
2

= λ2m(1 + ‖Fmum‖22)

= λ2m

[
1 +

∥∥∥∥Qm [ Rmo
]
um

∥∥∥∥2
2

]
= λ2m(1 + ‖Rmum‖22)
= λ2m(1 + ‖zm‖22).

So, we have

‖Arm‖2 = λm

√
1 + ‖zm‖22.

This relation enables us to obtain the norms ‖Arm‖2, m ≥ 1, without
actually having to form xm and rm. Now, we summarize the steps of the
new method, called GGMRES method, for the solution group of a linear
system (1) when A is singular and ind(A) = 1, as follows.
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Algorithm 2 GGMRES algorithm

1. Pick x0 and compute r0 = b−Ax0 and Ar0.
2. Compute β = ‖Aar0‖ and set v1 = β−1(Aar0).
3. Orthogonalize the Krylov vectors Aar0, A

a+1r0, . . . , via the Arnoldi-
Gram-Schmidtprocess carried out like the modified Gram-Schmidt pro-
cess:

For i = 1, 2, . . . , do
Compute hij = (vj , Avi), j = 1, 2, . . . , i.
Compute v̂i = Avi −

∑i
j=1 vjhij .

Let hi+1,i = ‖v̂i‖ and set vi+1 = v̂i/hi+1,i.
4. EndDo
5. For k = 1, 2, . . . , form the matrices V̂k ∈ CN×k and H̄k ∈ C(k+1)×kas

defined in (5)and (8), respectively.
6. Form the vector dm and the matrix Fm by using the recursive formula

dT2 = H̄
(2)
1� H̄

(1)
�1 , dTk+1 = (dTk |H̄

(k+1)
1� H̄

(k)
�k ), k = 2, 3, . . . ,m− 1

and

F2 = R̄2H̄
(1)
�1 , Fk+1 = (F̃k|R̄k+1H̄

(k)
�k ), k = 2, 3, . . . ,m− 1,

where F̃k =

[
Fk
0

]
and R̄k is defined in (11).

7. Compute the QR factorization of Fm : Fm = QmRm; Qm ∈ Rm×m−1
and Rm ∈ R(m−1)×(m−1).

8. Solve RTmzm = dm and Rmum = zm.
9. Compute λm = β

1+dTmum
and ξm = λmum.

10. Compute xm = x0 + V̂m−1ξm.
11. Compute ‖Arm‖2 = λm

√
1 + ‖zm‖22.

It is possible to implement the GGMRES algorithm in a progressive
manner. The columns of H̄m, Fm, and Rm can be computed step by step
and ‖Arm‖2 can be computed with no additional operations. In addition,
as DGMRES algorithm, the computation of the vector xm requires that
the m vectors v1, v2, . . . , vm−1 and x0 (all of dimension n) to be stored.

4 Numerical examples

To compare the behavior of the proposed GGMRES method discussed in
the previous section with the DGMRES method, in this section, we present
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numerical results for two examples. Our examples, which have a singular
coefficient matrix, are derived by the finite difference method for elliptic
partial differential equations. The numerical computations are performed in
MATLAB (R213a) with double precision. All computations were performed
running the code on an Intel (R) Core (TM) i7-2600, 3.40 GHz machine
with 8 GB of RAM memory using Windows 7 professional 64-bit operating
system. The initial vector x0 is the zero vector. All the tests were stopped
as soon as ‖Arm‖2 ≤ 10−12.

Example 1. We form the linear system Ax = b by discretizing Poisson
equation with Neumann boundary conditions:

{
( ∂2

∂x2
+ ∂2

∂y2
)u(x, y) = f(x, y), (x, y) ∈ Ω = [0, 1]× [0, 1],

∂
∂nu(x, y) = ϕ(x, y), x, y ∈ ∂Ω.

This linear system also has been formed by Sidi [16] for testing DGMRES
algorithm. The problem has also been considered by Hank and Hochbruck
[10] for testing the Chebyshev-type semi-iterative method.

Let M be an odd integer, we discretize the Poisson equation on a uni-
form grid of mesh size h = 1/M via central differences, and then by taking
the unknowns in the red-black order we obtain the system Ax = b, where
the (M + 1)2 × (M + 1)2 nonsymmetric matrix A is as follows

A =

[
A1 A2

A3 A1

]
, (21)

where A1 = 4I,

A2 =



T2 −2I o · · · · · · · · · · · · o

−I T1 −I o
...

o −I T2 −I o
...

... o −I T1 −I . . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . o
... o −I T2 −I
o · · · · · · · · · · · · o −2I T1


,
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and

A3 =



T1 −2I o · · · · · · · · · · · · o

−I T2 −I o
...

o −I T1 −I o
...

... o −I T2 −I . . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . o
... o −I T1 −I
o · · · · · · · · · · · · o −2I T2


.

Here, I and o denote, respectively, the (M + 1)/2× (M + 1)/2 identity and
zero matrices and the (M + 1)/2× (M + 1)/2 matrices T1 and T2 are given
by

T1 =



−2 o · · · · · · o

−1 −1
. . .

...

o
. . .

. . .
. . .

...
...

. . . −1 o
o · · · o −1 −1


, T2 =



−1 −1 o · · · o

o −1
. . .

. . .
...

...
. . .

. . .
. . . o

... −1 −1
o · · · · · · o −2


.

The numerical experiment is performed for M = 31, 63, 127.

Example 2. As shown in [4], applying 5−point central differences to the
partial differential equation

∂2U

∂x2
+
∂2U

∂y2
+ d

∂U

∂x
= f(x, y), 0 < x, y < 1,

over the unit square Ω = (0, 1)×(0, 1) with the periodic boundary condition:

u(x, 0) = u(x, 1), u(0, y) = u(1, y),

yields a singular system with a nonsymmetric coefficient matrix. The mesh
size is chosen as h = 1/m for Ω, so that the resulting system has the
following n× n coefficient matrix (where n = m2):

A :=
1

h2



Dm Im · · · Im
Im Dm Im

. . .
. . .

. . .
. . .

. . .
. . .

Im Dm Im
Im Im Dm


. (22)
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Here Im is the m×m unit matrix and Dm the m×m matrix is given by

Dm :=


−4 α+ α−
α− −4 α+

. . .
. . .

. . .

α− −4 α+

α+ α− −4

 ,

where α± = 1± dh
2 . The numerical experiment is done for d = 0.1, d = 0.3,

d = 0.5, and m = 60.

For the matrix A of both (21) and (22) the identity Ae = AT e = 0 holds,
so that Null(A) = Null(AT ) = Span{e}, where e = (1, 1, . . . , 1)T . Further-
more, ind(A) = 1, as mentioned in [10,16]. Even if the continuous problem
has a solution, the discretized problem need not to be consistent. Here, we
consider only the Group-inverse solution of the system for arbitrary right
side b, not necessarily related to f and ϕ.

As [17], we first construct a consistent system with known solution
ŝ ∈ R(A) via ŝ = Ay, where y = [0, . . . , 0, 1]T . Then we perturb Aŝ, the
right-hand side of Ax = Aŝ = b̂, with a constant multiple of the null space
vector e and we obtain the right-hand side

b = b̂+ δ
e

‖e‖2
.

Consequently the system Ax = b̂ + δ e
‖e‖2 is solved for x. The perturbation

parameter δ is selected as 10−2 in our experiments.

For these examples, the solution we are looking for is the vector ŝ, whose
components are zeros except

ŝ2M̂2−M̂ = −1, ŝ2M̂2−1 = −1, ŝ2M̂2 = −2, ŝ4M̂2 = 4,

where M̂ = (M + 1)/2 for Example 1 and except

ŝm = 1, ŝm2−m = 1, ŝm2−m+1 = α−, ŝm2−1 = α+, ŝm2 = 4,

for Example 2.

In Tables 1-4, we give the number of iterations (Its), the CPU time
(Time) required for convergence, and the error (Error) for the DGMRES
and GGMRES methods. As shown in Tables 1-4 the GGMRES algorithm
is effective and less expensive than the DGMRES algorithm.
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Table 1: Application of GGMRES implementation to the consistent singu-
lar system for Example 1.

Size of A 1024× 1024 4096× 4096 16384× 16384

Method Its Time Error Its Time Error Its Time Error

DGMRES 164 0.33 8.87e− 013 310 4.20 9.92e− 13 471 29.46 9.00e− 13
GGMRES 164 0.24 8.67e− 013 310 3.23 9.88e− 13 471 24.34 9.83e− 13

Table 2: Application of GGMRES implementation to the inconsistent sin-
gular system for Example 1.

Size of A 1024× 1024 4096× 4096 16384× 16384

Method Its Time Error Its Time Error Its Time Error

DGMRES 164 0.38 8.74e− 013 310 4.04 9.90e− 13 471 29.48 9.96e− 13
GGMRES 164 0.31 8.67e− 013 310 3.35 9.88e− 13 471 22.99 9.83e− 13

Table 3: Application of GGMRES implementation to the consistent singu-
lar system for Example 2 with m = 60(n=3600).

A 0.1 0.3 0.5

Method Its Time Error Its Time Error Its Time Error

DGMRES 217 1.74 9.97e− 13 240 2.11 9.70e− 13 246 2.27 9.35e− 13
GGMRES 217 1.38 9.93e− 13 240 1.60 9.68e− 13 246 1.64 9.30e− 13

Table 4: Application of GGMRES implementation to the inconsistent sin-
gular systemfor Example 2 with m = 60(n=3600).

A 0.1 0.3 0.5

Method Its Time Error Its Time Error Its Time Error

DGMRES 217 1.80 9.99e− 13 240 2.09 9.76e− 13 246 2.29 9.96e− 13
GGMRES 217 1.45 9.93e− 13 240 1.68 9.68e− 13 246 1.64 9.57e− 13

5 Conclusion

In this paper, we have presented a new method, called GGMRES, for com-
puting the group-inverse solution of singular linear equations with index
one. This method is based on DGMRES algorithm. Numerical experiments
show that the group-inverse solution obtained by this method is reasonably
accurate, and its computation time is less than that of solution obtained by
the DGMRES method. So, we can conclude that the GGMRES algorithm
is a robust and efficient tool for computing the group-inverse solution of
singular linear equations with index one.
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