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Abstract. In this paper we consider the European continuous installment
call option. Then its linear complementarity formulation is given. Writ-
ing the resulted problem in variational form, we prove the existence and
uniqueness of its weak solution. Finally finite element method is applied to
price the European continuous installment call option.
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1 Introduction

One of the important instruments in the market of financial derivatives is
option. In the recent years, the role and the complexity of financial con-
tracts have grown tremendously, causing a dramatic change in the financial
industry. Issuers, investors, and government regulators have increased their
reliance on derivative instruments to augment the liquidity of markets, to
reallocate financial risks among market participants, and to take advan-
tage of differences in costs and returns between these markets. One of
these instruments is installment derivatives which have two important fea-
tures differentiating them from other types of derivatives: the premium
is paid periodically at pre-specified dates, and the holder has the right
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to stop making the payments, thereby terminating the contract. Install-
ment options introduce flexibility in the liquidity management of portfolio
strategies. Instead of paying a lump sum for a derivative instrument, the
holder of the installment option will pay the installments as long as the
need for being long in the option is present. After the payment of all of the
installments, installment option will become a vanilla option. A number
of other contracts can be considered as installment options such as: some
life insurance contracts and capital investment projects [13], [7], install-
ment warrant [3], [5], some contracts in pharmacy [14] and employee stock
options [12].

Discrete installment options are investigated in [2]. Whereas in the case
of continuous installment options a few work exist. Alobidi used the integral
transform to price European continuous installment options [1]. Kimura in-
vestigated European continuous installment options using Laplace-Carson
transform [11]. Closed form solutions for pricing European continuous in-
stallment options are determined by Kimura [11].

In this paper, we will consider the European continuous installment
call option. To describe the share price, Black-Scholes model is applied.
None of the mentioned papers have discussed existence and uniqueness of
the solution of installment option pricing problem. To do this, we have in-
troduced the complementarity problem formulation for instalment option
and have presented, for the first time, the appropriate spaces for the weak
solution of installment option. In continuation, the existence and unique-
ness of the weak solution for the free boundary problem resulted from the
modeling stage are proved. Using finite element method, we get the price
of the mentioned option.

The rest of the paper is organized as follows: Section 2 presents the
modeling of European continuous installment option under Black-Scholes
model. In Section 3, the linear complementarity formulation of the Euro-
pean continuous installment call option under the Black-Scholes underlying
asset model will be given. Section 4, will present the variational inequality
formulation of call option and existence and uniqueness of the variational
problem. In Section 5, the valuation of European installment call option
will be discussed using finite element method. Numerical solution of the
variational problems will be presented in Section 6. At last, Section 7 is
devoted to the result analysis of the mentioned problem.
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2 The model

Setting up a portfolio Πt consisting of a European continuous installment
option and ∆ units of underlying asset, we get

Πt = V (St, t; q)−∆St, (1)

where V (St, t; q) is the value of the European continuous installment option
and q is the rate of installment that must be paid per unit time continuously
and St is the value of underlying asset evolving according to the following
stochastic differential equation, called Black-Scholes model,

dSt = (r − δ)Stdt+ σStdWt, (2)

in which r is the interest rate, δ is the dividend yield, σ is a positive constant
called volatility and Wt is a one dimensional Wienner process.

The dynamic of the portfolio Πt is given by

dΠt = dV (St, t; q)−∆dSt −∆(Stδdt). (3)

Applying Ito’s lemma to V (St, t; q) yields

dV = (
∂V

∂t
+

1

2
σ2S2

t

∂2V

∂S2
t

+ (r − δ)St
∂V

∂St
− q)dt+ σSt

∂V

∂St
dWt. (4)

Substituting from (2) and (4) into (3), one can get

dΠt = (
∂V

∂t
+

1

2
σ2S2

t

∂2V

∂S2
t

+ (r−δ)St
∂V

∂St
+ (r − δ)St(

∂V

∂St
−∆)

− δ∆St − q)dt+ σSt(
∂V

∂St
−∆)dWt. (5)

To avoid arbitrage opportunities, the portfolio must satisfy dΠt = rΠtdt.
On the other hand the portfolio must be riskless ∂V

∂St
= ∆. Substituting

from these relations into (5), we obtain

∂V

∂t
+

1

2
σ2S2

t

∂2V

∂S2
t

+ (r − δ)St
∂V

∂St
− rV = q. (6)

The only difference between the above partial differential equation (PDE)
and the one arising from the modeling of European vanilla option is the
nonhomogeneous term q which is the rate of installment.
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3 Linear complementarity formulation

Let c(St, t; q) be the value of the European installment call option with the
maturity T , the exercise price K and the payoff function max(ST −K, 0).
In this case an optimal stopping problem arises because of the opportunity
to terminate the contract at any time t ∈ [0, T ]. Hence, one should find
such points (St, t) that optimally terminates the contract. The value of
call option can be computed as the solution of the following optimal time
stopping problem [11]

c(St, t; q) = esssupτ∈[t,T ]E[χ{τ≥T}e
−r(T−t)max(ST −K, 0)

−q
r

(1− e−r(τ∧T−t))|Ft], (7)

where τ ∧ T = min(τ, T ) and (Ω, (Ft)t≥0,Ft,P) is a filtered probability
space and τ is a stopping time of its filtration. The time at which the above
relation gets its supremum is called an optimal stopping time τ ∈ [0, T ].
The domain of definition is D = [0, T ]× [0,∞). Let us denote the stopping
region and the continuation region by S and C, respectively. Then, the
stopping region is

S = {(St, t) ∈ D | c(St, t; q) = 0}. (8)

The optimal stopping time τ∗ is characterized by

τ∗ = inf{τ ∈ [t, T ]|(Sτ , τ) ∈ S}. (9)

Since the continuation region is the complement of the stopping region in
D, it is given by

C = {(St, t) ∈ D | c(St, t; q) > 0}. (10)

The boundary at which the regions S and C separated from each other is
called stopping boundary

Sf (t) = inf{St ∈ [0,∞) | c(St, t; q) > 0}, t ∈ [0, T ]. (11)

The valuation of European call option can be done through the solution of
the following inhomogeneous PDE [11]

∂c

∂t
+

1

2
σ2S2

t

∂2c

∂S2
+ (r − δ)S ∂c

∂S
− rc = q, (12)

subject to the terminal condition

c(ST , T ; q) = max(ST −K), (13)
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and along with boundary conditions

lim
St→Sf (t)

c(St, t; q) = 0, lim
St→Sf (t)

∂c

∂S
= 0, lim

St→∞

∂c

∂S
<∞. (14)

Now, we want to reformulate this problem as a linear complementarity
problem. When the asset price falls within the stopping region, the Euro-
pean call option should be exercised optimally so that its value is given by
c(St, t; q) = 0. Substituting this relation in the partial differential equation
(PDE) (12), one can see that this equation is not satisfied so it is strictly
less than q in stopping region. We then conclude that

∂c

∂t
+

1

2
σ2S2

t

∂2c

∂S2
+ (r − δ)S ∂c

∂S
− rc ≤ q, St ≥ 0, t ∈ [0, T ]. (15)

On the other hand, the European call value is always positive when St >
Sf (t) and equal to zero when St ≤ Sf (t), that is,

c(St, t; q) ≥ 0, St ≥ 0, t ∈ [0, T ]. (16)

Since (St, t) is either in the continuation region or stopping region, equality
holds in one of the above pair of inequalities. We then deduce that

(
∂c

∂t
+

1

2
σ2S2

t

∂2c

∂S2
+ (r − δ)S ∂c

∂S
− rc− q)c = 0, St ≥ 0, t ∈ [0, T ]. (17)

Changing the variables by τ = T − t and x = lnSt and setting u(x, τ) =
c(St, t), the linear complementarity formulation [10] of the European call
is given by

∂u

∂τ
−Au ≥ l, x ∈ R, τ ∈ [0, T ]

u(x, τ ; q) ≥ 0, x ∈ R, τ ∈ [0, T ], (18)

(
∂u

∂τ
−Au− l)u(x, τ ; q) = 0, x ∈ R, τ ∈ [0, T ],

where

Au =
1

2
σ2∂

2u

∂x2
+ µ

∂u

∂x
− ru, (19)

l(x) = −q, µ = r − δ − 1

2
σ2,

with the initial condition

u(x, 0; q) = g(x), (20)

where

g(x) = max(ex −K, 0). (21)



176 A. Beiranvand, A. Neisy and K. Ivaz

4 Existence and uniqueness

In this section, we derive the variational formulation to (18). We observe
that the pay-off function (13) or initial condition (20) does not belong to
L2(R). Moreover, since we switched to logarithmic price, this function
has an exponential growth at infinity, therefore we cannot use standard
Sobolev spaces as function spaces for this problem. We introduce weighted
Sobolev spaces to account for the exponential growth of solutions at infinity.
Before stating the variational inequality, we introduce some function spaces.
Assume that 0 < ν < ∞, m is nonnegative integer and 1 ≤ p ≤ ∞.
We define Wm,p,ν(R) as the set of functions v in Lp(R, e−ν|x|dx) whose
weak derivatives up to m exist and belong to Lp(R, e−ν|x|dx) [10]. By this
definition we can write the following weighted space

Hm
ν (R) = Wm,2,ν(R). (22)

For simplicity, we also set L2
ν(R) = W 0,2,ν(R). The set of admissible solu-

tions for the problem (18) is defined by

Kν = {v ∈ H1
ν (R) : v ≥ 0 a.e. x ∈ R}. (23)

Clearly, this set is convex and closed and 0 ∈ Kν . Then variational inequal-
ity form of problem (18) is given by

Find u ∈ L2(J ;H1
ν (R)) ∩H1(J ;L2

ν(R)) such that u(t, .) ∈ Kν and,

(
∂u

∂t
, v − u)ν + aν(u, v − u) ≥ (l, v − u)ν , ∀v ∈ Kν

u(x, 0) = u0(x), (24)

where u0(x) = g(x) and the bilinear form aν(., .) : H1
ν (R)×H1

ν (R) → R is
given by

aν(u, v) =
1

2
σ2

∫
R

∂u

∂x

∂v

∂x
e−2ν|x|dx

−
∫
R

(µ+ νσ2sign(x))
∂u

∂x
ve−2ν|x|dx+ r

∫
R
uve−2ν|x|dx, (25)

and (., .)ν is the inner product in L2
ν(R) and defined by

(u, v)ν =

∫
R
uve−2ν|x|dx.
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Theorem 1. For ν > 0, the bilinear form aν(., .) is bounded and satisfies
the Garding inequality,i.e.

|aν(u, v)| ≤ C1‖u‖H1
ν (R)‖v‖H1

ν (R), ∀u, v ∈ H1
ν (R),

aν(v, v) + C2‖v‖2L2
ν(R) ≥ C3‖v‖2H1

ν (R),∀v ∈ H
1
ν (R), (26)

where Ci > 0, i = 1, 2, 3 are constants.

Proof. First we prove the boundedness of the bilinear form aν(., .). Let u,
v ∈ H1

ν (R). Using the Cauchy-Schawrz inequality, one can easily get

|aν(u, v)| ≤ σ2

2
‖∂u
∂x
‖L2

ν(R)‖
∂v

∂x
‖L2

ν(R) + C‖∂u
∂x
‖L2

ν(R)‖v‖L2
ν(R)

+ r‖u‖L2
ν(R)‖v‖L2

ν(R)

≤ C1‖u‖H1
ν (R)‖v‖H1

ν (R). (27)

This proves the boundedness. To prove that the bilinear form aν(., ) satisfies
Garding inequality, we consider v ∈ H1

ν (R)

aν(v, v) ≥ σ2

2
‖∂v
∂x
‖2L2

ν(R) − β‖
∂v

∂x
‖L2

ν(R)‖v‖L2
ν(R) + r‖v‖2L2

ν(R). (28)

Using the inequality

ab ≤ 1

2ε2
a2 +

1

2
ε2b2, ε > 0, (29)

we can obtain that

aν(v, v) + C2‖v‖2L2
ν(R) ≥ C3‖v‖2H1

ν (R). (30)

At this moment we will show that the variational problem (24) admits
a unique weak solution.

Theorem 2. The variational problem (24) has a unique weak solution.

Proof. Let V = H1
ν (R) and H = L2

ν(R). Clearly, we have u0 = g(x) ∈ H
and l = −q ∈ L2(J ;V?). Using [9, Theorem B.2.2], one can deduce that
the variational inequality (24) admits a unique weak solution u for every
(u0, l) ∈ H × L2(J ;V?), where V? denotes the dual space of V.
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5 Valuation

In order to compute the price of European continuous installment call op-
tion using finite element method, we must localize the problem (18) in a
bounded domain then reformulate it as a variational inequality. Let R1,
R2 ∈ R with R1 < R2 and set Ω = (R1, R2). Moreover assume that
u(x, t) = u(x, τ ; q), t = τ . Now, we consider the new linear complementar-
ity problem

∂u

∂t
−Au ≥ l, x ∈ Ω, t ∈ [0, T ]

u(x, t) ≥ 0, x ∈ Ω, t ∈ [0, T ], (31)

(
∂u

∂t
−Au− l)u(x, t) = 0, x ∈ Ω, t ∈ [0, T ],

with initial condition (20) and boundary conditions

u(x, t) = g(x), x ∈ ∂Ω. (32)

Let ϕ be a C2 function with ϕ = g in an open neibghorhood of ∂Ω. Setting
u = u− ϕ yields, for x ∈ Ω and t ∈ [0, T ], the following LCP

∂u

∂t
−Au ≥ f,

u ≥ −ϕ, (33)

(
∂u

∂t
−Au− f)(u+ ϕ) = 0,

with the initial and null Dirichlet boundary conditions

u(x, 0) = u0(x), x ∈ Ω, (34)

u(x, t) = 0, x ∈ ∂Ω, t ∈ [0, T ], (35)

where f = l − Aϕ and u0(x) = g(x) − ϕ(x). To form the variational
inequality problem for the above LCP, one needs to write the admissible
set of solutions. Assume that this set is given by

Kϕ = {v ∈ H1
0 (Ω) : v ≥ −ϕ a.e. x ∈ Ω}. (36)

By multiplying the relation (33) by φ ∈ H1
0 (Ω) and integrating over Ω, one

can write the variational inequality problem for European installment call
option as follows

Find u ∈ L2(J ;H1
0 (Ω)) ∩H1(J ;L2(Ω)) such that u(t, .) ∈ Kϕ and,

(
∂u

∂t
, v − u) + a(u, v − u) ≥ (f, v − u), ∀v ∈ Kϕ,

u(x, 0) = u0(x), (37)



Mathematical analysis and pricing of the European continuous . . . 179

where the bilinear form a(., .) : H1(Ω)×H1(Ω)→ R is given by

a(u, v) =
1

2
σ2

∫
Ω

∂u

∂x

∂v

∂x
dx− µ

∫
Ω

∂u

∂x
vdx+ r

∫
Ω
uvdx, (38)

and (., .) is the inner product in L2(Ω) and is given by (u, v) =
∫

Ω uvdx.
Setting V = H1

0 (Ω) and H = L2(Ω) and using a similar argument as in
previous section, one can prove that the variational inequality problem
(37) has a unique weak solution.

In the next step, we want to solve the mentioned variational problem
(37) numerically using the finite element method. Let N > 0 be integer and
consider h = R2−R1

N+1 as the step length. We discretize the domain Ω by step
length h into N+1 subintervals. Assuming that φ(x) = (x+1)χ{−1≤x≤0}+

(1 − x)χ{0<x≤1}, one can define the basis functions as φh,i(x) = φ(x−xih ),
1 ≤ i ≤ N . Then the finite element space can be constructed as Vh =
Span(φh,1, φh,2, · · · , φh,N ). Therefore the approximate solution is defined
by

uh(x, t) =
N∑
i=1

ui(t)φh,i(x), t ∈ [0, T ], (39)

subsequently approximated set of admissible solutions is given by

Kh = {uh ∈ Vh : ui(t) ≥ −ϕ(xi), 1 ≤ i ≤ N}. (40)

Let uh, vh ∈ Kh with u(t) = (u1(t), u2(t), · · · , uN (t))T and v(t) =
(v1(t), v2(t), · · · , vN (t))T as their coefficient vectors. Substituting these
functions in (37) yields

Find uh ∈ C1(J ;Vh) such that u(t, .) ∈ Kh,

(
∂uh
∂t

, vh − uh) + a(uh, vh − uh) ≥ (f, vh − uh), ∀vh ∈ Kh,

uh(x, 0) = u0(x), (41)

where J = [0, T ]. This, in turn, gives

(v− u(t))T [Mu̇(t) + Au(t) + f] ≥ 0, ∀v ≥ −ϕh, (42)

where ϕh = (ϕ(x1), ϕ(x2), · · · , ϕ(xN )), M = (Mij) with Mij = (φh,j , φh,i)
is the mass matrix, A = (Aij) with Aij = a(φh,j , φh,i) is the stiffness
matrix and f = (f1, f2, · · · , fM )T with fi = (q, φh,i) + a(ϕ, φh,i) is the load



180 A. Beiranvand, A. Neisy and K. Ivaz

vector. Note that M and A are tridiagonal matrices and are given by

M =
h

6


4 1

1 4
. . .

. . .
. . . 1
1 4

 , A =


β γ

α β
. . .

. . .
. . . γ
α β

 ,

where

α = a(φh,i, φh,i+1) =
1

2
µ+

1

6
rh− 1

2h
σ2,

β = a(φh,i, φh,i+1) =
2

3
rh+

1

h
σ2,

γ = a(φh,i, φh,i−1) = −1

2
µ+

1

6
rh− 1

2h
σ2.

Let M > 0 be an integer number and set k = T
M+1 . Using k as time step

to discretize the interval [0, T ] and applying θ-scheme to the relation (42),
one can get

(v− uj+1)T [(M + kθA)uj+1 − (M− k(1− θ)A)uj + kb] ≥ 0, ∀v ≥ −ϕh,
(43)

u0 = u0, 0 ≤ j ≤M, (44)

where uj = u(tj) and u0 = (u0(x1), u0(x2), · · · , u0(xN )). This is equivalent
to [10]

(M + kθA)uj+1 − (M− k(1− θ)A)uj + kb ≥ 0, (45)

uj+1 ≥ −ϕh, (46)

[(M + kθA)uj+1 − (M− k(1− θ)A)uj + kb](uj+1 + ϕh) = 0, (47)

Thus, for any j, we have an LCP whose general form is
Ax− b ≥ 0,

x ≥ c,
(Ax− b,x− c) = 0,

(48)

where the m×m matrix A and the m-vectors b and c are constant, and x is
the vector of unknowns. To compute the solution, projected successive over
relaxation method (PSOR) will be applied. In the context of option pricing
problems resulting to LCP, the most popular method is the projected SOR
method [4, 15]. For other methods in this relation see [4, 15]. Description
of this algorithm (Algorithm 1) is as follows
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Algorithm 1: Projected SOR Method

1. Choose an initial guess x0.

2. Choose ω ∈ (0, 1] and ε > 0.

3. For k = 0, 1, 2, . . . , Do

4. For i = 1, 2, . . . ,M Do

5. x̃k+1
i := 1

Aii
(bi −

∑
j<iAijx

k+1
j −

∑
j≥iAijx

k
j ))

6. xk+1
i := max(ci,x

k
i + ω(x̃k+1

i − xki ))

7. EndDo

8. If ‖xk+1 − xk‖2 < ε stop else

9. EndDo

6 Numerical experiments

This section deals with the report of the numerical results related to pricing
European continuous installment call option under Black-Scholes model. To
implement the finite element method, one needs to determine the values of
the parameters of the problem. Let these values be given as in the following
table

Table 1: The values of the parameters

Parameter K T σ r δ

Value 100 0.25,1 0.2,0.3 0.03 0.05

At this time we choose ϕ(x) = u0(x). By this choice the initial condition
(34) becomes null. In the next step we will use the θ-scheme in the implicit
case θ = 1. Substituting this value of θ in (45) yields

Zuj+1 − Yj ≥ 0, (49)

uj+1 ≥ −u0, (50)

(Zuj+1 − Yj ,uj+1 + u0) = 0, (51)

where

Z = M + kA, Yj = Muj − kb ≥ 0. (52)
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Since u0 ∈ H1(Ω), a(u, φh,i) is well-defined. Therefore, using integration
by parts, for φ ∈ H1

0 (Ω), one can get

a(u0, φ) = −1

2
Kσ2φ(lnK) + δ

∫ R2

lnK
exφdx+ rK

∫ R2

lnK
φdx, (53)

which defines a functional in H−1(Ω), dual space of H1
0 (Ω). The ends of

the computational domain Ω are chosen as R1 = K
2 and R2 = 2K, where

K is strike price. To solve a LCP using PSOR method, an initial guess is
required. In this paper, we set the initial time step zero. Subsequently, in
the jth time step, the solution uj−1, obtained in the (j − 1)th time step, is
used as initial guess for uj . Since PSOR is an iterative scheme, a stopping
criteria is required. When two successive iterations satisfy ‖xk+1−xk‖ ≤ ε,
for ε = 10−9, the PSOR algorithm is terminated. Also relaxation parameter
for PSOR algorithm is chosen as ω = 0.5. Setting N + 1 = 1000 and
M + 1 = 200, we discretize the interval Ω = (R1, R2) and the interval [0, T ]
by step length h = 0.5 and time step k = 0.05, respectively. At this moment
one can run PSOR method to get the fair price of the European continuous
installment call option. Choosing some stock price St, some installment
rate q and applying PSOR algorithm to solve the sequence of LCP in (49),
we obtain the numerical result shown in Tables 2-5. For the prices in these
tables, two values are chosen for both volatility σ ∈ {0.2, 0.3} and maturity
T ∈ {0.25, 1}.

Table 2: Installment call option prices for σ = 0.2 and T = 0.25

q S0 Price

1 95 0.5124
105 5.0859
115 11.6488

3 95 0.3119
105 4.4296
115 10.9597

6 95 0.5832
105 3.8679
115 9.3643

To investigate the effect of installment rate q, non-homogeneous term
in PDE (12), we have chosen some value of this parameter. Comparing
the prices with the same stock price S0 and different installment rate q
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Table 3: Installment call option prices σ = 0.2 and T = 1

q S0 Price

1 95 3.7069
105 8.3989
115 14.8534

3 95 2.2278
105 6.6390
115 12.9679

6 95 0.6760
105 4.2751
115 10.2529

Table 4: Installment call option prices for σ = 0.3 and T = 0.25

q S0 Price

1 95 2.3563
105 7.0561
115 13.5534

3 95 2.1369
105 6.4593
115 12.8482

6 95 2.1458
105 5.7576
115 11.2566

shows that the increase in installment rate causes the decrease in the value
of the European continuous installment call option. As installment rate
q tends to zero the installment option price approaches the price of its
counterpart vanilla option. On the other hand, by Table 2, decreasing the
rate of installment q increases the price of installment call option. This
proves that the premium of the vanilla option is greater than the premium
of the installment option.
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Table 5: Installment call option prices σ = 0.3 and T = 1

q S0 Price

1 95 7.4035
105 12.1847
115 18.6498

3 95 5.8456
105 10.3410
115 16.7589

6 95 6.1711
105 4.2751
115 13.9618

7 Conclusion

We formulated the European Continuous installment call option in the
complementarity form and proved existence and uniqueness of its weak
solution using variational inequality form. In conclusion we believe that
this approach gives a simple and straightforward framework to survey the
problems arisen in option pricing in mathematical finance.

As future research, one can generalize the underlying asset model to
other stochastic processes such as local volatility models, stochastic volatil-
ity models and jump-diffusion models. It is also possible to consider exotic
options whose premiums are paid by a sequence of installment (discrete or
continuous) but note that their boundary conditions may changed.
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