Journal of Algebra and Related Topics

Vol. 3, No 2, (2015), pp 61-71

$n^{t h}$-ROOTS AND n-CENTRALITY OF FINITE 2-GENERATOR p-GROUPS OF NILPOTENCY CLASS 2

M. HASHEMI * AND M. POLKOUEI

Abstract

Here we consider all finite non-abelian 2-generator p groups (p an odd prime) of nilpotency class two and study the probability of having $n^{t h}$-roots of them. Also we find integers n for which, these groups are n-central.

1. Introduction

Let $n>1$ be an integer. An element a of group G is said to have an $n^{\text {th }}$-root b in G, if $a=b^{n}$. The probability that a randomly chosen element in G has an $n^{t h}$-root, is given by

$$
P_{n}(G)=\frac{\left|G^{n}\right|}{|G|}
$$

where $G^{n}=\left\{a \in G \mid a=b^{n}\right.$, for some $\left.b \in G\right\}=\left\{x^{n} \mid x \in G\right\}$. A. Sadeghieh and H. Doostie in [3] computed the probability $P_{n}(G)$ for Dihedral groups $D_{2 m}$ and Quaternion groups $Q_{2^{m}}$ for every integer $m \geq 3$. Also, in [2] the probability that Hamiltonian groups may have $n^{\text {th }}$-roots have been calculated.
For $n>1$, a group G is said to be n-central if $\left[x^{n}, y\right]=1$ for all $x, y \in G$. In [4], some relations between n-abelian and n-central groups have been investigated.
Suppose that $H \triangleleft G$ and there is subgroup K such that $G=H K$ and $H \cap K=\{e\}$, then G is said to be the semidirect product of H by K; in symbol $G=H \rtimes K$. Clearly if $K \triangleleft G$, then $H \rtimes K \cong H \times K$.

[^0]First, we state the following Lemma without proof.
Lemma 1.1. If G is a group and $G^{\prime} \subseteq Z(G)$, then the following hold for every integer k and $u, v, w \in G$:
(i) $[u v, w]=[u, w][v, w]$ and $[u, v w]=[u, v][u, w]$;
(ii) $\left[u^{k}, v\right]=\left[u, v^{k}\right]=[u, v]^{k}$;
(iii) $(u v)^{k}=u^{k} v^{k}[v, u]^{k(k-1) / 2}$.

The following theorem classifies all finite non-abelian 2-generator p groups of nilpotency class two $(p \neq 2)$.

Theorem 1.2. [1] Let G be a finite non-abelian 2-generator p-group of nilpotency class two (p an odd prime). Then G is isomorphic to exactly one of the following three types of groups:
(1) $G \cong(\langle c\rangle \times\langle a\rangle) \rtimes\langle b\rangle$, where $[a, b]=c,[a, c]=[b, c]=1,|a|=p^{\alpha}$, $|b|=p^{\beta},|c|=p^{\gamma}, \alpha, \beta, \gamma \in \mathbb{N}, \alpha \geq \beta \geq \gamma ;$
(2) $G \cong\langle a\rangle \rtimes\langle b\rangle$, where $[a, b]=a^{p^{\alpha-\gamma}},|a|=p^{\alpha},|b|=p^{\beta},|[a, b]|=$ $p^{\gamma}, \alpha, \beta, \gamma \in \mathbb{N}, \alpha \geq 2 \gamma, \beta \geq \gamma ;$
(3) $G \cong(\langle c\rangle \times\langle a\rangle) \rtimes\langle b\rangle$, where $[a, b]=a^{p^{\alpha-\gamma}} c,[c, b]=a^{-p^{2(\alpha-\gamma)}} c^{-p^{\alpha-\gamma}}$, $|a|=p^{\alpha},|b|=p^{\beta},|c|=p^{\sigma},|[a, b]|=p^{\gamma}, \alpha, \beta, \gamma, \sigma \in \mathbb{N}$, $\beta \geq \gamma>\sigma \geq 1, \alpha+\sigma \geq 2 \gamma$.

Remark 1.3. By the relators given in each case, every element x of the above classes of groups can be uniquely presented as $x=c^{k} a^{i} b^{j}$ where $0 \leq k<|c|, 0 \leq i<p^{\alpha}$ and $0 \leq j<p^{\beta}$.

In Section 2, we consider all finite nonabelian 2-generator p-groups $(p \neq 2)$ of nilpotency class two and study the probability of having $n^{\text {th }}$-roots of them. Section 3 is devoted to investigating n-centrality of these groups.

2. The probability of having $n^{\text {th }}$-Roots

In this section for each class of finite non-abelian 2-generator p groups $(p \neq 2)$ of nilpotency class two, we find the probability of having $n^{\text {th }}$-roots. Here for $m \in \mathbb{Z}$, by m^{*} we mean the arithmetic inverse of m.

Theorem 2.1. Let $G \cong(\langle c\rangle \times\langle a\rangle) \rtimes\langle b\rangle$, where $[a, b]=c,[a, c]=$ $[b, c]=1,|a|=p^{\alpha},|b|=p^{\beta},|c|=p^{\gamma}, \alpha, \beta, \gamma \in \mathbb{N}, \alpha \geq \beta \geq \gamma$. Then

$$
P_{n}(G)=\frac{1}{p^{s+t+w}}
$$

where $\left(n, p^{\alpha}\right)=p^{s},\left(n, p^{\beta}\right)=p^{t}$ and $\left(n, p^{\gamma}\right)=p^{w}$.

Proof. Let $x=c^{k} a^{i} b^{j}$ be an element of G^{n} where $0 \leq k<p^{\gamma}, 0 \leq i<p^{\alpha}$ and $0 \leq j<p^{\beta}$. If $x=\left(x_{1}\right)^{n}$ when $x_{1}=c^{k_{1}} a^{i_{1}} b^{j_{1}} \in G, 0 \leq k_{1}<p^{\gamma}$, $0 \leq i_{1}<p^{\alpha}$ and $0 \leq j_{1}<p^{\beta}$, then we must have

$$
\begin{aligned}
c^{k} a^{i} b^{j} & =\left(c^{k_{1}} a^{i_{1}} b^{j_{1}}\right)^{n} \\
& =c^{n k_{1}-\frac{n(n-1)}{2} i_{1} j_{1}} a^{n i_{1}} b^{n j_{1}}
\end{aligned}
$$

By uniqueness of presentation of elements of G, we obtain

$$
\left\{\begin{array}{l}
n i_{1} \equiv i\left(\bmod p^{\alpha}\right) \\
n j_{1} \equiv j\left(\bmod p^{\beta}\right) \\
n k_{1}-\frac{n(n-1)}{2} i_{1} j_{1} \equiv k\left(\bmod p^{\gamma}\right)
\end{array}\right.
$$

Now let $\left(n, p^{\alpha}\right)=p^{s}$. The first congruence of the system (1) has the solution

$$
i_{1} \equiv\left(\frac{n}{p^{s}}\right)^{*}\left(\frac{i}{p^{s}}\right)\left(\bmod p^{\alpha-s}\right)
$$

if and only if $p^{s} \mid i$. Then

$$
i \in\left\{p^{s}, 2 p^{s}, \ldots, p^{\alpha-s} p^{s}\right\}
$$

This means that i has $p^{\alpha-s}$ choices. Similarly if $\left(n, p^{\beta}\right)=p^{t}$, then by the second equation of System (1) we get

$$
j \in\left\{p^{t}, 2 p^{t}, \ldots, p^{\beta-t} p^{t}\right\}
$$

So j admits $p^{\beta-t}$ values.
Now suppose $\left(n, p^{\gamma}\right)=p^{w}$. Since $p \neq 2$, clearly for all $n \in \mathbb{N}$ we have $p^{w} \left\lvert\, \frac{n(n-1)}{2}\right.$. Hence from the third equation of system (1), we obtain

$$
k_{1} \equiv\left(\frac{n}{p^{w}}\right)^{*}\left(\frac{n^{2}-n}{2 p^{w}}\right) i_{1} j_{1}+\left(\frac{n}{p^{w}}\right)^{*}\left(\frac{k}{p^{w}}\right)\left(\bmod p^{\gamma-w}\right)
$$

provided that

$$
k \in\left\{p^{w}, 2 p^{w}, \ldots, p^{\gamma-w} p^{w}\right\} .
$$

Therefore we have $p^{\gamma-w}$ choices for k. By the above facts, $\left|G^{n}\right|$ is equal to

$$
\left|\left\{c^{k} a^{i} b^{j} \mid i \in\left\{p^{s}, \ldots, p^{\alpha-s} p^{s}\right\}, j \in\left\{p^{t}, \ldots, p^{\beta-t} p^{t}\right\}, k \in\left\{p^{w}, \ldots, p^{\gamma-w} p^{w}\right\}\right\}\right| .
$$

Thus

$$
\left|G^{n}\right|=p^{\alpha-s} \times p^{\beta-t} \times p^{\gamma-w}=p^{\alpha+\beta+\gamma-s-t-w}
$$

and

$$
|G|=|a| \times|b| \times|c|=p^{\alpha+\beta+\gamma}
$$

So

$$
P_{n}(G)=\frac{\left|G^{n}\right|}{|G|}=\frac{1}{p^{s+t+w}}
$$

To continue, we find the probability of having $n^{t h}$-root for second class of groups of Theorem 1.2.

Theorem 2.2. Let $G \cong\langle a\rangle \rtimes\langle b\rangle$, where $[a, b]=a^{p^{\alpha-\gamma}},|a|=p^{\alpha}$, $|b|=p^{\beta},|[a, b]|=p^{\gamma}, \alpha, \beta, \gamma \in \mathbb{N}, \alpha \geq 2 \gamma, \beta \geq \gamma$. Then

$$
P_{n}(G)=\frac{1}{p^{s+t}}
$$

where $\left(n, p^{\alpha}\right)=p^{s}$ and $\left(n, p^{\beta}\right)=p^{t}$.
Proof. Let $x=a^{i} b^{j} \in G^{n}$ where $0 \leq i<p^{\alpha}$ and $0 \leq j<p^{\beta}$. If $x_{1}=a^{i_{1}} b^{j_{1}} \in G, 0 \leq i_{1}<p^{\alpha}$ and $0 \leq j_{1}<p^{\beta}$ such that $x=\left(x_{1}\right)^{n}$, then by uniqueness of presentation of elements of G (See Remark 1.3) we must have

$$
\begin{aligned}
a^{i} b^{j} & =\left(a^{i_{1}} b^{j_{1}}\right)^{n} \\
& =a^{n i_{1}-\frac{n(n-1)}{2} i_{1} j_{1}} b^{n j_{1}} .
\end{aligned}
$$

So

$$
\left\{\begin{array}{l}
n j_{1} \equiv j\left(\bmod p^{\beta}\right) \tag{2}\\
n i_{1}-\frac{n(n-1)}{2} i_{1} j_{1} \equiv i\left(\bmod p^{\alpha}\right) .
\end{array}\right.
$$

Now, we consider two cases:
Case 1. Suppose $p^{\beta} \mid n$. Then the above system changes to

$$
\left\{\begin{array}{l}
j=0 \\
n i_{1} \equiv i\left(\bmod p^{\alpha}\right)
\end{array}\right.
$$

If $\left(n, p^{\alpha}\right)=p^{s}$, then

$$
i_{1} \equiv\left(\frac{n}{p^{s}}\right)^{*}\left(\frac{i}{p^{s}}\right)\left(\bmod p^{\alpha-s}\right)
$$

is the solution of system (2) if and only if $p^{s} \mid i$. So

$$
i \in\left\{p^{s}, 2 p^{s}, \ldots, p^{\alpha-s} p^{s}\right\}
$$

Therefore in this case

$$
\begin{aligned}
P_{n}(G) & =\frac{\left|G^{n}\right|}{|G|} \\
& =\frac{\left|\left\{(i, j) \mid i \in\left\{p^{s}, 2 p^{s}, \ldots, p^{\alpha-s} p^{s}\right\}, j=0\right\}\right|}{|a| \times|b|} \\
& =\frac{p^{\alpha-s}}{p^{\alpha+\beta}}=\frac{1}{p^{s+\beta}}=\frac{1}{p^{s+t}} .
\end{aligned}
$$

Case 2. Let $p^{\beta} \nmid n$ and $\left(n, p^{\beta}\right)=p^{t}$. Then the first equation of the System (2) has solution

$$
\begin{equation*}
j_{1} \equiv\left(\frac{n}{p^{t}}\right)^{*}\left(\frac{j}{p^{t}}\right)\left(\bmod p^{\beta-t}\right) \tag{3}
\end{equation*}
$$

if $p^{t} \mid j$. Then

$$
j \in\left\{p^{t}, 2 p^{t}, \ldots, p^{\beta-t} p^{t}\right\}
$$

Now let $\left(n, p^{\alpha}\right)=p^{s}$. For finding the number of choices of i, we have to consider two subcases:

Subcase 2.a. Let n be an even integer, then in second congruence of system (2) we have

$$
\frac{n}{2} i_{1}\left(2-(n-1) j_{1}\right) \equiv i\left(\bmod p^{\alpha}\right)
$$

Since $\left(p^{\alpha}, \frac{n}{2}\right)=p^{s}$,

$$
i_{1}\left(2-(n-1) j_{1}\right) \equiv\left(\frac{n}{2 p^{s}}\right)^{*}\left(\frac{i}{p^{s}}\right)\left(\bmod p^{\alpha-s}\right)
$$

Now by replacing $j=p^{t+1}$ in Congruence (3), we get

$$
j_{1} \equiv p\left(\frac{n}{p^{t}}\right)^{*}\left(\bmod p^{\beta-t}\right)
$$

Then $2-(n-1) j_{1}$ and $p^{\alpha-s}$ are prime to each other. So we can write

$$
i_{1} \equiv\left(\frac{n}{2 p^{s}}\right)^{*}\left(2-(n-1) j_{1}\right)^{*}\left(\frac{i}{p^{s}}\right)\left(\bmod p^{\alpha-s}\right)
$$

provided that

$$
i \in\left\{p^{s}, 2 p^{s}, \ldots, p^{\alpha-s} p^{s}\right\}
$$

This means that there are $p^{\alpha-s}$ solutions for i.
Subcase 2.b. Let n be an odd integer, then

$$
n i_{1}\left(1-\frac{(n-1)}{2} j_{1}\right) \equiv i\left(\bmod p^{\alpha}\right) .
$$

So by considering $j=p^{t+1}$, we get that

$$
j_{1} \equiv p\left(\frac{n}{p^{t}}\right)^{*}\left(\bmod p^{\beta-t}\right)
$$

Hence we can write

$$
i_{1} \equiv\left(\frac{n}{p^{s}}\right)^{*}\left(1-\frac{(n-1)}{2} j_{1}\right)^{*}\left(\frac{i}{p^{s}}\right)\left(\bmod p^{\alpha-s}\right) .
$$

This obtained i_{1} is a solution of the second equation of system (2) if and only if

$$
i \in\left\{p^{s}, 2 p^{s}, \ldots, p^{\alpha-s} p^{s}\right\}
$$

Now since in both subcases we have $p^{\alpha-s}$ choices for i, we get

$$
\begin{aligned}
P_{n}(G) & =\frac{\left|G^{n}\right|}{|G|} \\
& =\frac{\left|\left\{(i, j) \mid i \in\left\{p^{s}, \ldots, p^{\alpha-s} p^{s}\right\}, j \in\left\{p^{t}, \ldots, p^{\beta-t} p^{t}\right\}\right\}\right|}{|a| \times|b|} \\
& =\frac{p^{\alpha+\beta-s-t}}{p^{\alpha+\beta}}=\frac{1}{p^{s+t}} .
\end{aligned}
$$

Finally for third class of groups of Theorem 1.2, we have the following theorem.
Theorem 2.3. Let $G \cong(\langle c\rangle \times\langle a\rangle) \rtimes\langle b\rangle$, where $[a, b]=a^{p^{\alpha-\gamma}} c,[c, b]=$ $a^{-p^{2(\alpha-\gamma)}} c^{-p^{\alpha-\gamma}},|a|=p^{\alpha},|b|=p^{\beta},|c|=p^{\sigma},|[a, b]|=p^{\gamma}, \alpha, \beta, \gamma, \sigma \in \mathbb{N}$, $\beta \geq \gamma>\sigma \geq 1, \alpha+\sigma \geq 2 \gamma$. Then

$$
P_{n}(G)=\frac{1}{p^{s+t+u}}
$$

where $\left(n, p^{\alpha}\right)=p^{s},\left(n, p^{\beta}\right)=p^{t}$ and $\left(n, p^{\sigma}\right)=p^{u}$.
Proof. Let $x=c^{k} a^{i} b^{j}$ be an element of G^{n} where $0 \leq k<p^{\sigma}, 0 \leq i<p^{\alpha}$ and $0 \leq j<p^{\beta}$. If $x_{1}=c^{k_{1}} a^{i_{1}} b^{j_{1}} \in G$ where $0 \leq k_{1}<p^{\sigma}, 0 \leq i_{1}<p^{\alpha}$, $0 \leq j_{1}<p^{\beta}$ and $x=\left(x_{1}\right)^{n}$, then we must have
$c^{k} a^{i} b^{j}=\left(c^{k_{1}} a^{i_{1}} b^{j_{1}}\right)^{n}$

$$
=c^{n k_{1}-\frac{n(n-1)}{2} i_{1} j_{1}+\frac{n(n-1)}{2} p^{\alpha-\gamma} k_{1} j_{1}} a^{n i_{1}-\frac{n(n-1)}{2} p^{\alpha-\gamma} i_{1} j_{1}+\frac{n(n-1)}{2} p^{2(\alpha-\gamma)} k_{1} j_{1}} b^{n j_{1}} .
$$

So by uniqueness of presentation of elements of G (See Remark 1.3), we obtain

$$
\left\{\begin{array}{l}
n j_{1} \equiv j\left(\bmod p^{\beta}\right) \\
n k_{1}-\frac{n(n-1)}{2} i_{1} j_{1}+\frac{n(n-1)}{2} p^{\alpha-\gamma} k_{1} j_{1} \equiv k\left(\bmod p^{\sigma}\right)(4) \\
n i_{1}-\frac{n(n-1)}{2} p^{\alpha-\gamma} i_{1} j_{1}+\frac{n(n-1)}{2} p^{2(\alpha-\gamma)} k_{1} j_{1} \equiv i\left(\bmod p^{\alpha}\right)
\end{array}\right.
$$

For solution of this system, we consider two cases:
Case I. Let $\left(n, p^{\beta}\right)=p^{t}$ and $t \neq \beta$. Then the first congruence of System (4) has the solution

$$
j_{1} \equiv\left(\frac{n}{p^{t}}\right)^{*}\left(\frac{j}{p^{t}}\right)\left(\bmod p^{\beta-t}\right)
$$

if and only if $p^{t} \mid j$. So

$$
j \in\left\{p^{t}, 2 p^{t}, \ldots, p^{\beta-t} p^{t}\right\}
$$

and consequently we have $p^{\beta-t}$ choices for j. Now let $\left(n, p^{\alpha}\right)=p^{s}$ and $\left(n, p^{\sigma}\right)=p^{u}$. For solving congruences, we consider two cases. First let n be an even integer, then we can write

$$
\frac{n}{2}\left(2 k_{1}-(n-1) i_{1} j_{1}+(n-1) p^{\alpha-\gamma} k_{1} j_{1}\right) \equiv k\left(\bmod p^{\sigma}\right)
$$

Since $p \neq 2$, we have $\left(\frac{n}{2}, p^{\sigma}\right)=p^{u}$. Therefore

$$
2 k_{1}-(n-1) i_{1} j_{1}+(n-1) p^{\alpha-\gamma} k_{1} j_{1} \equiv \frac{k}{p^{u}}\left(\frac{n}{2 p^{u}}\right)^{*}\left(\bmod p^{\sigma-u}\right)
$$

provided that $p^{u} \mid k$. So

$$
k_{1}\left(2+(n-1) p^{\alpha-\gamma} j_{1}\right) \equiv \frac{k}{p^{u}}\left(\frac{n}{2 p^{u}}\right)^{*}+(n-1) i_{1} j_{1}\left(\bmod p^{\sigma-u}\right) .
$$

Since $p \mid j$, we have

$$
\begin{align*}
k_{1} \equiv & \left(2+(n-1) p^{\alpha-\gamma} j_{1}\right)^{*} \frac{k}{p^{u}}\left(\frac{n}{2 p^{u}}\right)^{*} \\
& +\left(2+(n-1) p^{\alpha-\gamma} j_{1}\right)^{*}(n-1) i_{1} j_{1}\left(\bmod p^{\sigma-u}\right) \tag{5}
\end{align*}
$$

if

$$
k \in\left\{p^{u}, 2 p^{u}, \ldots, p^{\sigma-u} p^{u}\right\} .
$$

Hence there are at most $p^{\sigma-u}$ choices for k. On the other hand, we write

$$
\frac{n}{2}\left(2 i_{1}-(n-1) p^{\alpha-\gamma} i_{1} j_{1}+(n-1) p^{2(\alpha-\gamma)} k_{1} j_{1}\right) \equiv i\left(\bmod p^{\alpha}\right) .
$$

Since $\left(\frac{n}{2}, p^{\alpha}\right)=p^{s}$, we obtain

$$
2 i_{1}-(n-1) p^{\alpha-\gamma} i_{1} j_{1}+(n-1) p^{2(\alpha-\gamma)} k_{1} j_{1} \equiv\left(\frac{n}{2 p^{s}}\right)^{*} \frac{i}{p^{s}}\left(\bmod p^{\alpha-s}\right)
$$

provided that $p^{s} \mid i$. By replacing the obtained k_{1}, in the above congruence we get

$$
\begin{aligned}
& 2 i_{1}-(n-1) p^{\alpha-\gamma} i_{1} j_{1}+(n-1) p^{2(\alpha-\gamma)} j_{1}\left(2+(n-1) p^{\alpha-\gamma} j_{1}\right)^{*} \frac{k}{p^{u}}\left(\frac{n}{2 p^{u}}\right)^{*} \\
& \left.\quad+(n-1)^{2} p^{2(\alpha-\gamma)} i_{1} j_{1}^{2}\left(2+(n-1) p^{\alpha-\gamma} j_{1}\right)^{*}\right) \equiv\left(\frac{n}{2 p^{s}}\right)^{*} \frac{i}{p^{s}}\left(\bmod p^{\alpha-s}\right) .
\end{aligned}
$$

Therefore

$$
\begin{gathered}
i_{1}\left(2-(n-1) p^{\alpha-\gamma} j_{1}+(n-1)^{2} p^{2(\alpha-\gamma)} j_{1}^{2}\left(2+(n-1) p^{\alpha-\gamma} j_{1}\right)^{*}\right) \equiv \\
\left(\frac{n}{2 p^{s}}\right)^{*} \frac{i}{p^{s}}-(n-1) p^{2(\alpha-\gamma)} j_{1}\left(2+(n-1) p^{\alpha-\gamma} j_{1}\right)^{*} \frac{k}{p^{u}}\left(\frac{n}{2 p^{u}}\right)^{*}\left(\bmod p^{\alpha-s}\right) .
\end{gathered}
$$

Since $p \mid(n-1) p^{\alpha-\gamma} j_{1}$ and $p \mid(n-1)^{2} p^{2(\alpha-\gamma)} j_{1}^{2}$, we can write

$$
\begin{aligned}
& i_{1} \equiv\left(2-(n-1) p^{\alpha-\gamma} j_{1}+(n-1) p^{2(\alpha-\gamma)} j_{1}^{2}\left(2+(n-1) p^{\alpha-\gamma} j_{1}\right)^{*}\right)^{*} \frac{i}{p^{s}} \\
& \times\left(\frac{n}{2 p^{s}}\right)^{*}-\left(2-(n-1) p^{\alpha-\gamma} j_{1}+(n-1) p^{2(\alpha-\gamma)} j_{1}^{2}\left(2+(n-1) p^{\alpha-\gamma} j_{1}\right)^{*}\right)^{*} \\
& \times(n-1) p^{2(\alpha-\gamma)} j_{1}\left(2+(n-1) p^{\alpha-\gamma}\right)^{*} \frac{k}{p^{u}}\left(\frac{n}{2 p^{u}}\right)^{*}\left(\bmod p^{\alpha-s}\right)
\end{aligned}
$$

provided that $p^{s} \mid i$. Now clearly i_{1} is a solution of this system if and only if

$$
i \in\left\{p^{s}, 2 p^{s}, \ldots, p^{\alpha-s} \cdot p^{s}\right\}
$$

Hence we must have exactly $p^{\alpha-s}$ choices for i. By replacing i_{1} in congruence (5), we get

$$
\begin{aligned}
& k_{1} \equiv\left(2+(n-1) p^{\alpha-\gamma} j_{1}\right)^{*} \frac{k}{p^{u}}\left(\frac{n}{2 p^{u}}\right)^{*}+\left(2+(n-1) p^{\alpha-\gamma} j_{1}\right)^{*}(n-1) j_{1} \\
& \times\left(2-(n-1) p^{\alpha-\gamma} j_{1}+(n-1)^{2} p^{2(\alpha-\gamma)} j_{1}^{2}\left(2+(n-1) p^{\alpha-\gamma} j_{1}\right)^{*}\right)^{*}\left(\frac{n}{2 p^{s}}\right)^{*} \\
& \times \frac{i}{p^{s}}-\left(2+(n-1) p^{\alpha-\gamma} j_{1}\right)^{*}(n-1)^{2} j_{1}^{2} p^{2(\alpha-\gamma)}\left(2+(n-1) p^{\alpha-\gamma}\right)^{*} \\
& \times\left(2-(n-1) p^{\alpha-\gamma} j_{1}+(n-1)^{2} p^{2(\alpha-\gamma)} j_{1}^{2}\left(2+(n-1) p^{\alpha-\gamma} j_{1}\right)^{*}\right)^{*} \\
& \times \frac{k}{p^{u}}\left(\frac{n}{2 p^{u}}\right) \quad\left(\bmod p^{\sigma-u}\right) .
\end{aligned}
$$

So we conclude that k can be chosen in exactly $p^{\sigma-u}$ ways. Therefore

$$
\left|G^{n}\right|=p^{\alpha-s} \times p^{\beta-t} \times p^{\sigma-u}=p^{\alpha+\beta+\sigma-s-t-u}
$$

and

$$
|G|=|a| \times|b| \times|c|=p^{\alpha+\beta+\sigma} .
$$

Then we get the desired result. When n is an odd integer, the theorem can be proved similarly.

Case II. Let $\left(n, p^{\beta}\right)=p^{t}$. Then clearly $p^{\beta} \mid j$ and since $0 \leq j<p^{\beta}$, $j=0$. Then the second and third congruence of System (4) will be proved similar to the proof of Case I. In this case we obtain

$$
\left|G^{n}\right|=\left|\left\{(i, j, k) \mid i \in\left\{p^{s}, \ldots, p^{\alpha-s} p^{s}\right\}, j=0, k \in\left\{p^{u}, \ldots, p^{\sigma-u} p^{u}\right\}\right\}\right| .
$$

Hence

$$
P_{n}(G)=\frac{\left|G^{n}\right|}{|G|}=\frac{p^{\alpha+\sigma-s-u}}{p^{\alpha+\beta+\sigma}}=\frac{1}{p^{\beta+s+u}}=\frac{1}{p^{s+t+u}} .
$$

3. n-CENTRALITY

In this section, we again consider all finite non-abelian 2-generator p-groups $(p \neq 2)$ of nilpotency class two and this time we investigate n-centrality for them.

Theorem 3.1. Let G be a finite non-abelian 2-generator p-group of nilpotency class two. Then for $n>1$, the group G is n-central if and only if $p^{\gamma} \mid n$.

Proof. According to the Theorem 1.2, we consider three cases:
Case 1. Let $G \cong(\langle c\rangle \times\langle a\rangle) \rtimes\langle b\rangle$, where $[a, b]=c,[a, c]=[b, c]=1$, $|a|=p^{\alpha},|b|=p^{\beta},|c|=p^{\gamma}, \alpha, \beta, \gamma \in \mathbb{N}, \alpha \geq \beta \geq \gamma$. Also let $x=$ $c^{k_{1}} a^{i_{1}} b^{j_{1}}$ and $y=c^{k_{2}} a^{i_{2}} b^{j_{2}}$ be two elements of G where $0 \leq k_{1}, k_{2}<p^{\gamma}$, $0 \leq i_{1}, i_{2}<p^{\alpha}$ and $0 \leq j_{1}, j_{2}<p^{\beta}$. Then by Lemma 1.1, we get

$$
x^{n}=c^{n k_{1}-\frac{n(n-1)}{2} i_{1} j_{1}} a^{n i_{1}} b^{n j_{1}}
$$

and

$$
x^{n} y=c^{n k_{1}+k_{2}-\frac{n(n-1)}{2} i_{1} j_{1}-n i_{2} j_{1}} a^{n i_{1}+i_{2}} b^{n j_{1}+j_{2}} .
$$

Also we obtain

$$
y x^{n}=c^{n k_{1}+k_{2}-\frac{n(n-1)}{2} i_{1} j_{1}-n i_{1} j_{2}} a^{n i_{1}+i_{2}} b^{n j_{1}+j_{2}} .
$$

We know that G is n-central if and only if $x^{n} y=y x^{n}$, for all $x, y \in G$. Furthermore by uniqueness of presentation of $x^{n} y$ and $y x^{n}$, we see that $x^{n} y=y x^{n}$ if and only if

$$
n k_{1}+k_{2}-\frac{n(n-1)}{2} i_{1} j_{1}-n i_{2} j_{1} \equiv n k_{1}+k_{2}-\frac{n(n-1)}{2} i_{1} j_{1}-n i_{1} j_{2}\left(\bmod p^{\gamma}\right) .
$$

This is equivalent to

$$
n\left(i_{1} j_{2}-i_{2} j_{1}\right) \equiv 0\left(\bmod p^{\gamma}\right)
$$

Now since this holds for all $x, y \in G, p^{\gamma} \mid n$.
Case 2. Let $G \cong\langle a\rangle \rtimes\langle b\rangle$, where $[a, b]=a^{p^{\alpha-\gamma}},|a|=p^{\alpha},|b|=p^{\beta}$, $|[a, b]|=p^{\gamma}, \alpha, \beta, \gamma \in \mathbb{N}, \alpha \geq 2 \gamma, \beta \geq \gamma$. Also, let $x=a^{i_{1}} b^{j_{1}}, y=a^{i_{2}} b^{j_{2}}$ be two elements of G, where $0 \leq i_{1}, i_{2}<p^{\alpha}$ and $0 \leq j_{1}, j_{2}<p^{\beta}$. By using Lemma 1.1, we get

$$
x^{n} y=a^{n i_{1}+i_{2}-\frac{n(n-1)}{2} p^{\alpha-\gamma_{i_{1}} j_{1}-n p^{\alpha-\gamma} i_{2} j_{1}} b^{n j_{1}+j_{2}}}
$$

and

$$
y x^{n}=a^{n i_{1}+i_{2}-\frac{n(n-1)}{2} p^{\alpha-\gamma_{i_{1}} j_{1}-n p^{\alpha-\gamma} i_{1} j_{2}} b^{n j_{1}+j_{2}} .}
$$

Hence by uniqueness of presentation of $x^{n} y$ and $y x^{n}$, the statement $x^{n} y=y x^{n}$ is equal to

$$
n\left(i_{1} j_{2}-i_{2} j_{1}\right) \equiv 0\left(\bmod p^{\gamma}\right)
$$

for all $x, y \in G$. So, we get the desired result.
Case 3. Let $G \cong(\langle c\rangle \times\langle a\rangle) \rtimes\langle b\rangle$, where $[a, b]=a^{p^{\alpha-\gamma}} c,[c, b]=$ $a^{-p^{2(\alpha-\gamma)}} c^{-p^{\alpha-\gamma}},|a|=p^{\alpha},|b|=p^{\beta},|c|=p^{\sigma},|[a, b]|=p^{\gamma}, \alpha, \beta, \gamma, \sigma \in \mathbb{N}$, $\beta \geq \gamma>\sigma \geq 1, \alpha+\sigma \geq 2 \gamma$. By the presentation of elements of G, we have $x=c^{k_{1}} a^{i_{1}} b^{j_{1}}$ and $y=c^{k_{2}} a^{i_{2}} b^{j_{2}}$ where $0 \leq k_{1}, k_{2}<p^{\sigma}$, $0 \leq i_{1}, i_{2}<p^{\alpha}$ and $0 \leq j_{1}, j_{2}<p^{\beta}$.

$$
\begin{gathered}
x^{n} y=c^{n k_{1}+k_{2}+\frac{n(n-1)}{2} p^{\alpha-\gamma} k_{1} j_{1}-\frac{n(n-1)}{2} i_{1} j_{1}+n p^{\alpha-\gamma} k_{2} j_{1}-n i_{2} j_{1}} \\
\times a^{n i_{1}+i_{2}+\frac{n(n-1)}{2} p^{2(\alpha-\gamma)} k_{1} j_{1}-\frac{n(n-1)}{2} p^{\alpha-\gamma} i_{i_{1} j_{1}+n p^{2(\alpha-\gamma)}} k_{2} j_{1}-n p^{\alpha-\gamma} i_{2} j_{1}} \\
\times b^{n j_{1}+j_{2}} .
\end{gathered}
$$

and

$$
\begin{gathered}
y x^{n}=c^{n k_{1}+k_{2}+\frac{n(n-1)}{2} p^{\alpha-\gamma} k_{1} j_{1}-\frac{n(n-1)}{2} i_{1} j_{1}+n p^{\alpha-\gamma} k_{1} j_{2}-n i_{1} j_{2}} \\
\times a^{n i_{1}+i_{2}+\frac{n(n-1)}{2} p^{2(\alpha-\gamma)} k_{1} j_{1}-\frac{n(n-1)}{2} p^{\alpha-\gamma} i_{1} j_{1}+n p^{2(\alpha-\gamma)} k_{1} j_{2}-n p^{\alpha-\gamma}{i_{1} j_{2}}} \\
\times b^{n j_{1}+j_{2}} .
\end{gathered}
$$

By the above facts, we see that for all $x, y \in G ; x^{n} y=y x^{n}$ if and only if the following system holds

$$
\left\{\begin{array}{l}
n\left(p^{\alpha-\gamma}\left(k_{1} j_{2}-k_{2} j_{1}\right)+i_{2} j_{1}-i_{1} j_{2}\right) \equiv 0\left(\bmod p^{\sigma}\right) \tag{6}\\
n\left(p^{\alpha-\gamma}\left(k_{1} j_{2}-k_{2} j_{1}\right)+i_{2} j_{1}-i_{1} j_{2}\right) \equiv 0\left(\bmod p^{\gamma}\right)
\end{array}\right.
$$

Now let $p^{\gamma} \mid n$, then surely $p^{\sigma} \mid n$ and the above congruence system holds. Hence G will be n-central.
Conversely let G be an n-central group. So the system (6) must hold for all $x, y \in G$ such as $x=c^{3} a b$ and $y=c^{2} a^{2} b$. Then we get

$$
\left\{\begin{array}{l}
n\left(p^{\alpha-\gamma}-1\right) \equiv 0\left(\bmod p^{\sigma}\right) \\
n\left(p^{\alpha-\gamma}-1\right) \equiv 0\left(\bmod p^{\gamma}\right)
\end{array}\right.
$$

Hence $p^{\gamma} \mid n$.

References

1. M. R. Bacon, L. C. Kappe, The nonabelian tensor square of a 2-generator p-group of class 2, Arch. Math. 61(1993), 508-516.
2. A. Sadeghieh, H. Doostie and M. Azadi, Certain numerical results on the Fibonacci length and $n^{\text {th }}$-roots of Hamiltonian groups, International Mathematical Forum 4(39)(2009), 1923-1938.
3. A. Sadeghieh, H. Doostie, The n-th roots of elements in finite groups, Mathematical Sciences 2(4)(2008), 347-356.
4. C. Delizia, A. Tortora and A. Abdollahi, Some special classes of n-abelian groups, International journal of Group Theory 1(2012), 19-24.

Mansour Hashemi

Faculty of mathematical sciences, University of Guilan, P.O.Box 41335-19141, Rasht, Iran.
Email: m_hashemi@guilan.ac.ir

Mikhak Polkouei

Faculty of mathematical sciences, University of Guilan, P.O.Box 41335-19141, Rasht, Iran.
Email: mikhakp@yahoo.com

[^0]: MSC(2010): Primary: 20D15; Secondary: 20P05.
 Keywords: p-group, $n^{\text {th }}$-roots, n-central group.
 Received: 1 December 2015, Accepted: 30 December 2015.
 *Corresponding author.

