n^{th} -ROOTS AND n-CENTRALITY OF FINITE 2-GENERATOR p-GROUPS OF NILPOTENCY CLASS 2

M. HASHEMI * AND M. POLKOUEI

ABSTRACT. Here we consider all finite non-abelian 2-generator p-groups (p an odd prime) of nilpotency class two and study the probability of having n^{th} -roots of them. Also we find integers n for which, these groups are n-central.

1. Introduction

Let n > 1 be an integer. An element a of group G is said to have an n^{th} -root b in G, if $a = b^n$. The probability that a randomly chosen element in G has an n^{th} -root, is given by

$$P_n(G) = \frac{|G^n|}{|G|}$$

where $G^n = \{a \in G | a = b^n, for some b \in G\} = \{x^n | x \in G\}$. A. Sadeghieh and H. Doostie in [3] computed the probability $P_n(G)$ for Dihedral groups D_{2m} and Quaternion groups Q_{2^m} for every integer $m \geq 3$. Also, in [2] the probability that Hamiltonian groups may have n^{th} -roots have been calculated.

For n > 1, a group G is said to be n-central if $[x^n, y] = 1$ for all $x, y \in G$. In [4], some relations between n-abelian and n-central groups have been investigated.

Suppose that $H \triangleleft G$ and there is subgroup K such that G = HK and $H \cap K = \{e\}$, then G is said to be the semidirect product of H by K; in symbol $G = H \bowtie K$. Clearly if $K \triangleleft G$, then $H \bowtie K \cong H \times K$.

MSC(2010): Primary: 20D15; Secondary: 20P05.

Keywords: p-group, n^{th} -roots, n-central group.

Received: 1 December 2015, Accepted: 30 December 2015.

 $* Corresponding \ author.\\$

First, we state the following Lemma without proof.

Lemma 1.1. If G is a group and $G' \subseteq Z(G)$, then the following hold for every integer k and $u, v, w \in G$:

- (i) [uv, w] = [u, w][v, w] and [u, vw] = [u, v][u, w];
- $(ii)[u^k, v] = [u, v^k] = [u, v]^k;$
- (iii) $(uv)^k = u^k v^k [v, u]^{k(k-1)/2}$

The following theorem classifies all finite non-abelian 2-generator pgroups of nilpotency class two $(p \neq 2)$.

Theorem 1.2. [1] Let G be a finite non-abelian 2-generator p-group of nilpotency class two (p an odd prime). Then G is isomorphic to exactly one of the following three types of groups:

- (1) $G \cong (\langle c \rangle \times \langle a \rangle) \times \langle b \rangle$, where [a, b] = c, [a, c] = [b, c] = 1, $|a| = p^{\alpha}$, $|b| = p^{\beta}, |c| = p^{\gamma}, \alpha, \beta, \gamma \in \mathbb{N}, \alpha \geq \beta \geq \gamma;$ $(2) G \cong \langle a \rangle \rtimes \langle b \rangle, where [a, b] = a^{p^{\alpha - \gamma}}, |a| = p^{\alpha}, |b| = p^{\beta}, |[a, b]| = p^{\beta}$
- p^{γ} , $\alpha, \beta, \gamma \in \mathbb{N}$, $\alpha \ge 2\gamma$, $\beta \ge \gamma$;
- $(3) \ G \cong (\langle c \rangle \times \langle a \rangle) \rtimes \langle b \rangle, \ \text{where } [a,b] = a^{p^{\alpha-\gamma}}c, \ [c,b] = a^{-p^{2(\alpha-\gamma)}}c^{-p^{\alpha-\gamma}}c^{-p^$ $|a|=p^{\alpha}, |b|=p^{\beta}, |c|=p^{\sigma}, |[a,b]|=p^{\gamma}, \alpha, \beta, \gamma, \sigma \in \mathbb{N},$ $\beta > \gamma > \sigma > 1$, $\alpha + \sigma > 2\gamma$.

Remark 1.3. By the relators given in each case, every element x of the above classes of groups can be uniquely presented as $x = c^k a^i b^j$ where $0 \le k < |c|, 0 \le i < p^{\alpha} \text{ and } 0 \le j < p^{\beta}.$

In Section 2, we consider all finite nonabelian 2-generator p-groups $(p \neq 2)$ of nilpotency class two and study the probability of having n^{th} -roots of them. Section 3 is devoted to investigating n-centrality of these groups.

2. The probability of having n^{th} -roots

In this section for each class of finite non-abelian 2-generator pgroups $(p \neq 2)$ of nilpotency class two, we find the probability of having n^{th} -roots. Here for $m \in \mathbb{Z}$, by m^* we mean the arithmetic inverse of m.

Theorem 2.1. Let $G \cong (\langle c \rangle \times \langle a \rangle) \rtimes \langle b \rangle$, where [a,b] = c, [a,c] = $[b,c]=1, |a|=p^{\alpha}, |b|=p^{\beta}, |c|=p^{\gamma}, \alpha,\beta,\gamma\in\mathbb{N}, \alpha\geq\beta\geq\gamma.$ Then

$$P_n(G) = \frac{1}{p^{s+t+w}}$$

where $(n, p^{\alpha}) = p^s$, $(n, p^{\beta}) = p^t$ and $(n, p^{\gamma}) = p^w$.

Proof. Let $x = c^k a^i b^j$ be an element of G^n where $0 \le k < p^{\gamma}$, $0 \le i < p^{\alpha}$ and $0 \le j < p^{\beta}$. If $x = (x_1)^n$ when $x_1 = c^{k_1} a^{i_1} b^{j_1} \in G$, $0 \le k_1 < p^{\gamma}$, $0 \le i_1 < p^{\alpha}$ and $0 \le j_1 < p^{\beta}$, then we must have

$$c^{k}a^{i}b^{j} = (c^{k_{1}}a^{i_{1}}b^{j_{1}})^{n}$$
$$= c^{nk_{1}-\frac{n(n-1)}{2}i_{1}j_{1}}a^{ni_{1}}b^{nj_{1}}$$

By uniqueness of presentation of elements of G, we obtain

$$\begin{cases} ni_1 \equiv i \pmod{p^{\alpha}} \\ nj_1 \equiv j \pmod{p^{\beta}} \pmod{1} \\ nk_1 - \frac{n(n-1)}{2}i_1j_1 \equiv k \pmod{p^{\gamma}}. \end{cases}$$

Now let $(n, p^{\alpha}) = p^{s}$. The first congruence of the system (1) has the solution

$$i_1 \equiv (\frac{n}{p^s})^*(\frac{i}{p^s}) \pmod{p^{\alpha-s}}$$

if and only if $p^s \mid i$. Then

$$i \in \{p^s, 2p^s, \ldots, p^{\alpha-s}p^s\}.$$

This means that i has $p^{\alpha-s}$ choices. Similarly if $(n, p^{\beta}) = p^t$, then by the second equation of System (1) we get

$$j \in \{p^t, 2p^t, \dots, p^{\beta-t}p^t\}.$$

So j admits $p^{\beta-t}$ values.

Now suppose $(n, p^{\gamma}) = p^w$. Since $p \neq 2$, clearly for all $n \in \mathbb{N}$ we have $p^w \mid \frac{n(n-1)}{2}$. Hence from the third equation of system (1), we obtain

$$k_1 \equiv (\frac{n}{p^w})^* (\frac{n^2 - n}{2p^w}) i_1 j_1 + (\frac{n}{p^w})^* (\frac{k}{p^w}) \pmod{p^{\gamma - w}}$$

provided that

$$k \in \{p^w, 2p^w, \dots, p^{\gamma-w}p^w\}.$$

Therefore we have $p^{\gamma-w}$ choices for k. By the above facts, $\mid G^n \mid$ is equal to

Thus

$$\mid G^n \mid = p^{\alpha - s} \times p^{\beta - t} \times p^{\gamma - w} = p^{\alpha + \beta + \gamma - s - t - w}$$

and

$$\mid G \mid = \mid a \mid \times \mid b \mid \times \mid c \mid = p^{\alpha + \beta + \gamma}.$$

So

$$P_n(G) = \frac{|G^n|}{|G|} = \frac{1}{p^{s+t+w}}.$$

To continue, we find the probability of having n^{th} -root for second class of groups of Theorem 1.2.

Theorem 2.2. Let $G \cong \langle a \rangle \rtimes \langle b \rangle$, where $[a,b] = a^{p^{\alpha-\gamma}}$, $|a| = p^{\alpha}$, $|b| = p^{\beta}$, $|[a,b]| = p^{\gamma}$, $\alpha, \beta, \gamma \in \mathbb{N}$, $\alpha \geq 2\gamma$, $\beta \geq \gamma$. Then

$$P_n(G) = \frac{1}{p^{s+t}}$$

where $(n, p^{\alpha}) = p^s$ and $(n, p^{\beta}) = p^t$.

Proof. Let $x=a^ib^j\in G^n$ where $0\leq i< p^\alpha$ and $0\leq j< p^\beta$. If $x_1=a^{i_1}b^{j_1}\in G,\ 0\leq i_1< p^\alpha$ and $0\leq j_1< p^\beta$ such that $x=(x_1)^n$, then by uniqueness of presentation of elements of G (See Remark 1.3) we must have

$$a^{i}b^{j} = (a^{i_{1}}b^{j_{1}})^{n}$$

= $a^{ni_{1}-\frac{n(n-1)}{2}i_{1}j_{1}}b^{nj_{1}}$.

So

$$\begin{cases} nj_1 \equiv j \pmod{p^{\beta}} \\ ni_1 - \frac{n(n-1)}{2}i_1j_1 \equiv i \pmod{p^{\alpha}}. \end{cases} (2)$$

Now, we consider two cases:

Case 1. Suppose $p^{\beta} \mid n$. Then the above system changes to

$$\begin{cases} j = 0 \\ ni_1 \equiv i \pmod{p^{\alpha}}. \end{cases}$$

If $(n, p^{\alpha}) = p^s$, then

$$i_1 \equiv (\frac{n}{p^s})^* (\frac{i}{p^s}) \pmod{p^{\alpha-s}}$$

is the solution of system (2) if and only if $p^s \mid i$. So

$$i \in \{p^s, 2p^s, \dots, p^{\alpha-s}p^s\}.$$

Therefore in this case

$$P_n(G) = \frac{|G^n|}{|G|}$$

$$= \frac{|\{(i,j) \mid i \in \{p^s, 2p^s, \dots, p^{\alpha-s}p^s\}, j = 0\}|}{|a| \times |b|}$$

$$= \frac{p^{\alpha-s}}{p^{\alpha+\beta}} = \frac{1}{p^{s+\beta}} = \frac{1}{p^{s+t}}.$$

Case 2. Let $p^{\beta} \nmid n$ and $(n, p^{\beta}) = p^t$. Then the first equation of the System (2) has solution

$$j_1 \equiv (\frac{n}{p^t})^* (\frac{j}{p^t}) \ (mod \ p^{\beta-t}) \ (3)$$

if $p^t \mid j$. Then

$$j \in \{p^t, 2p^t, \dots, p^{\beta-t}p^t\}.$$

Now let $(n, p^{\alpha}) = p^{s}$. For finding the number of choices of i, we have to consider two subcases:

Subcase 2.a. Let n be an even integer, then in second congruence of system (2) we have

$$\frac{n}{2}i_1(2-(n-1)j_1) \equiv i \pmod{p^{\alpha}}.$$

Since $(p^{\alpha}, \frac{n}{2}) = p^s$,

$$i_1(2-(n-1)j_1) \equiv (\frac{n}{2p^s})^*(\frac{i}{p^s}) \pmod{p^{\alpha-s}}.$$

Now by replacing $j = p^{t+1}$ in Congruence (3), we get

$$j_1 \equiv p(\frac{n}{p^t})^* \ (mod \ p^{\beta-t}).$$

Then $2-(n-1)j_1$ and $p^{\alpha-s}$ are prime to each other. So we can write

$$i_1 \equiv (\frac{n}{2n^s})^* (2 - (n-1)j_1)^* (\frac{i}{n^s}) \pmod{p^{\alpha-s}}$$

provided that

$$i \in \{p^s, 2p^s, \dots, p^{\alpha-s}p^s\}.$$

This means that there are $p^{\alpha-s}$ solutions for i.

Subcase 2.b. Let n be an odd integer, then

$$ni_1(1 - \frac{(n-1)}{2}j_1) \equiv i \pmod{p^{\alpha}}.$$

So by considering $j = p^{t+1}$, we get that

$$j_1 \equiv p(\frac{n}{p^t})^* \ (mod \ p^{\beta-t}).$$

Hence we can write

$$i_1 \equiv (\frac{n}{p^s})^* (1 - \frac{(n-1)}{2}j_1)^* (\frac{i}{p^s}) \pmod{p^{\alpha-s}}.$$

This obtained i_1 is a solution of the second equation of system (2) if and only if

$$i \in \{p^s, 2p^s, \dots, p^{\alpha-s}p^s\}.$$

Now since in both subcases we have $p^{\alpha-s}$ choices for i, we get

$$P_n(G) = \frac{|G^n|}{|G|}$$

$$= \frac{|\{(i,j) | i \in \{p^s, \dots, p^{\alpha-s}p^s\}, j \in \{p^t, \dots, p^{\beta-t}p^t\}\}\}|}{|a| \times |b|}$$

$$= \frac{p^{\alpha+\beta-s-t}}{p^{\alpha+\beta}} = \frac{1}{p^{s+t}}.$$

Finally for third class of groups of Theorem 1.2, we have the following theorem.

Theorem 2.3. Let $G \cong (\langle c \rangle \times \langle a \rangle) \rtimes \langle b \rangle$, where $[a,b] = a^{p^{\alpha-\gamma}}c$, $[c,b] = a^{-p^{2(\alpha-\gamma)}}c^{-p^{\alpha-\gamma}}$, $|a| = p^{\alpha}$, $|b| = p^{\beta}$, $|c| = p^{\sigma}$, $|[a,b]| = p^{\gamma}$, $\alpha, \beta, \gamma, \sigma \in \mathbb{N}$, $\beta \geq \gamma > \sigma \geq 1$, $\alpha + \sigma \geq 2\gamma$. Then

$$P_n(G) = \frac{1}{p^{s+t+u}}$$

where $(n, p^{\alpha}) = p^s$, $(n, p^{\beta}) = p^t$ and $(n, p^{\sigma}) = p^u$.

Proof. Let $x = c^k a^i b^j$ be an element of G^n where $0 \le k < p^{\sigma}$, $0 \le i < p^{\alpha}$ and $0 \le j < p^{\beta}$. If $x_1 = c^{k_1} a^{i_1} b^{j_1} \in G$ where $0 \le k_1 < p^{\sigma}$, $0 \le i_1 < p^{\alpha}$, $0 \le j_1 < p^{\beta}$ and $x = (x_1)^n$, then we must have

$$c^{k}a^{i}b^{j} = (c^{k_{1}}a^{i_{1}}b^{j_{1}})^{n}$$

$$= c^{nk_{1} - \frac{n(n-1)}{2}i_{1}j_{1} + \frac{n(n-1)}{2}p^{\alpha-\gamma}k_{1}j_{1}}a^{ni_{1} - \frac{n(n-1)}{2}p^{\alpha-\gamma}i_{1}j_{1} + \frac{n(n-1)}{2}p^{2(\alpha-\gamma)}k_{1}j_{1}}b^{nj_{1}}$$

So by uniqueness of presentation of elements of G (See Remark 1.3), we obtain

$$\begin{cases} nj_1 \equiv j \pmod{p^{\beta}} \\ nk_1 - \frac{n(n-1)}{2}i_1j_1 + \frac{n(n-1)}{2}p^{\alpha-\gamma}k_1j_1 \equiv k \pmod{p^{\sigma}} \ (4) \\ ni_1 - \frac{n(n-1)}{2}p^{\alpha-\gamma}i_1j_1 + \frac{n(n-1)}{2}p^{2(\alpha-\gamma)}k_1j_1 \equiv i \pmod{p^{\alpha}}. \end{cases}$$

For solution of this system, we consider two cases:

Case I. Let $(n, p^{\beta}) = p^t$ and $t \neq \beta$. Then the first congruence of System (4) has the solution

$$j_1 \equiv (\frac{n}{p^t})^* (\frac{j}{p^t}) \pmod{p^{\beta-t}}$$

if and only if $p^t \mid j$. So

$$j \in \{p^t, 2p^t, \dots, p^{\beta - t}p^t\}$$

and consequently we have $p^{\beta-t}$ choices for j. Now let $(n, p^{\alpha}) = p^s$ and $(n, p^{\sigma}) = p^u$. For solving congruences, we consider two cases. First let n be an even integer, then we can write

$$\frac{n}{2} \left(2k_1 - (n-1)i_1 j_1 + (n-1)p^{\alpha - \gamma} k_1 j_1 \right) \equiv k \pmod{p^{\sigma}}$$

Since $p \neq 2$, we have $(\frac{n}{2}, p^{\sigma}) = p^{u}$. Therefore

$$2k_1 - (n-1)i_1j_1 + (n-1)p^{\alpha-\gamma}k_1j_1 \equiv \frac{k}{p^u}(\frac{n}{2p^u})^* \pmod{p^{\sigma-u}}$$

provided that $p^u \mid k$. So

$$k_1(2+(n-1)p^{\alpha-\gamma}j_1) \equiv \frac{k}{p^u}(\frac{n}{2p^u})^* + (n-1)i_1j_1 \pmod{p^{\sigma-u}}.$$

Since $p \mid j$, we have

$$k_{1} \equiv (2 + (n-1)p^{\alpha-\gamma}j_{1})^{*} \frac{k}{p^{u}} \left(\frac{n}{2p^{u}}\right)^{*} + (2 + (n-1)p^{\alpha-\gamma}j_{1})^{*}(n-1)i_{1}j_{1} \pmod{p^{\sigma-u}}$$
 (5)

if

$$k \in \{p^u, 2p^u, \dots, p^{\sigma-u}p^u\}$$
.

Hence there are at most $p^{\sigma-u}$ choices for k. On the other hand, we write

$$\frac{n}{2} \left(2i_1 - (n-1)p^{\alpha-\gamma}i_1j_1 + (n-1)p^{2(\alpha-\gamma)}k_1j_1 \right) \equiv i \pmod{p^{\alpha}}.$$

Since $(\frac{n}{2}, p^{\alpha}) = p^s$, we obtain

$$2i_1 - (n-1)p^{\alpha-\gamma}i_1j_1 + (n-1)p^{2(\alpha-\gamma)}k_1j_1 \equiv (\frac{n}{2n^s})^* \frac{i}{n^s} \pmod{p^{\alpha-s}}.$$

provided that $p^s \mid i$. By replacing the obtained k_1 , in the above congruence we get

$$2i_1 - (n-1)p^{\alpha-\gamma}i_1j_1 + (n-1)p^{2(\alpha-\gamma)}j_1(2 + (n-1)p^{\alpha-\gamma}j_1)^* \frac{k}{p^u} \left(\frac{n}{2p^u}\right)^*$$

$$+(n-1)^2 p^{2(\alpha-\gamma)} i_1 j_1^2 (2 + (n-1)p^{\alpha-\gamma} j_1)^*) \equiv (\frac{n}{2p^s})^* \frac{i}{p^s} \pmod{p^{\alpha-s}}.$$

Therefore

$$i_1 \left(2 - (n-1)p^{\alpha-\gamma} j_1 + (n-1)^2 p^{2(\alpha-\gamma)} j_1^2 (2 + (n-1)p^{\alpha-\gamma} j_1)^* \right) \equiv \left(\frac{n}{2p^s} \right)^* \frac{i}{p^s} - (n-1)p^{2(\alpha-\gamma)} j_1 (2 + (n-1)p^{\alpha-\gamma} j_1)^* \frac{k}{p^u} \left(\frac{n}{2p^u} \right)^* \pmod{p^{\alpha-s}}.$$

Since $p \mid (n-1)p^{\alpha-\gamma}j_1$ and $p \mid (n-1)^2p^{2(\alpha-\gamma)}j_1^2$, we can write

$$i_1 \equiv \left(2 - (n-1)p^{\alpha-\gamma}j_1 + (n-1)p^{2(\alpha-\gamma)}j_1^2(2 + (n-1)p^{\alpha-\gamma}j_1)^*\right)^* \frac{i}{p^s}$$

$$\times \left(\frac{n}{2p^s}\right)^* - \left(2 - (n-1)p^{\alpha-\gamma}j_1 + (n-1)p^{2(\alpha-\gamma)}j_1^2(2 + (n-1)p^{\alpha-\gamma}j_1)^*\right)^*$$

$$\times (n-1)p^{2(\alpha-\gamma)}j_1\left(2+(n-1)p^{\alpha-\gamma}\right)^*\frac{k}{p^u}\left(\frac{n}{2p^u}\right)^*\pmod{p^{\alpha-s}}$$

provided that $p^s \mid i$. Now clearly i_1 is a solution of this system if and only if

$$i \in \{p^s, 2p^s, \ldots, p^{\alpha-s}.p^s\}$$
.

Hence we must have exactly $p^{\alpha-s}$ choices for i. By replacing i_1 in congruence (5), we get

$$k_{1} \equiv \left(2 + (n-1)p^{\alpha-\gamma}j_{1}\right)^{*} \frac{k}{p^{u}} \left(\frac{n}{2p^{u}}\right)^{*} + \left(2 + (n-1)p^{\alpha-\gamma}j_{1}\right)^{*} (n-1)j_{1}$$

$$\times \left(2 - (n-1)p^{\alpha-\gamma}j_{1} + (n-1)^{2}p^{2(\alpha-\gamma)}j_{1}^{2}(2 + (n-1)p^{\alpha-\gamma}j_{1})^{*}\right)^{*} \left(\frac{n}{2p^{s}}\right)^{*}$$

$$\times \frac{i}{p^{s}} - \left(2 + (n-1)p^{\alpha-\gamma}j_{1}\right)^{*} (n-1)^{2}j_{1}^{2}p^{2(\alpha-\gamma)} \left(2 + (n-1)p^{\alpha-\gamma}\right)^{*}$$

$$\times \left(2 - (n-1)p^{\alpha-\gamma}j_{1} + (n-1)^{2}p^{2(\alpha-\gamma)}j_{1}^{2}(2 + (n-1)p^{\alpha-\gamma}j_{1})^{*}\right)^{*}$$

$$\times \frac{k}{p^{u}} \left(\frac{n}{2p^{u}}\right) \qquad (mod\ p^{\sigma-u}).$$

So we conclude that k can be chosen in exactly $p^{\sigma-u}$ ways. Therefore

$$\mid G^n \mid = p^{\alpha - s} \times p^{\beta - t} \times p^{\sigma - u} = p^{\alpha + \beta + \sigma - s - t - u}$$

and

$$\mid G \mid = \mid a \mid \times \mid b \mid \times \mid c \mid = p^{\alpha + \beta + \sigma}.$$

Then we get the desired result. When n is an odd integer, the theorem can be proved similarly.

Case II. Let $(n, p^{\beta}) = p^t$. Then clearly $p^{\beta} \mid j$ and since $0 \leq j < p^{\beta}$, j = 0. Then the second and third congruence of System (4) will be proved similar to the proof of Case I. In this case we obtain

$$\mid G^{n} \mid = \mid \{(i, j, k) \mid i \in \{p^{s}, \dots, p^{\alpha - s}p^{s}\}, j = 0, k \in \{p^{u}, \dots, p^{\sigma - u}p^{u}\}\} \mid ...$$

Hence

$$P_n(G) = \frac{\mid G^n \mid}{\mid G \mid} = \frac{p^{\alpha + \sigma - s - u}}{p^{\alpha + \beta + \sigma}} = \frac{1}{p^{\beta + s + u}} = \frac{1}{p^{s + t + u}}.$$

3. n-centrality

In this section, we again consider all finite non-abelian 2-generator p-groups ($p \neq 2$) of nilpotency class two and this time we investigate n-centrality for them.

Theorem 3.1. Let G be a finite non-abelian 2-generator p-group of nilpotency class two. Then for n > 1, the group G is n-central if and only if $p^{\gamma} \mid n$.

Proof. According to the Theorem 1.2, we consider three cases:

Case 1. Let $G \cong (\langle c \rangle \times \langle a \rangle) \rtimes \langle b \rangle$, where [a,b]=c, [a,c]=[b,c]=1, $|a|=p^{\alpha}$, $|b|=p^{\beta}$, $|c|=p^{\gamma}$, $\alpha,\beta,\gamma\in\mathbb{N}$, $\alpha\geq\beta\geq\gamma$. Also let $x=c^{k_1}a^{i_1}b^{j_1}$ and $y=c^{k_2}a^{i_2}b^{j_2}$ be two elements of G where $0\leq k_1,k_2< p^{\gamma}$, $0\leq i_1,i_2< p^{\alpha}$ and $0\leq j_1,j_2< p^{\beta}$. Then by Lemma 1.1, we get

$$x^{n} = c^{nk_{1} - \frac{n(n-1)}{2}i_{1}j_{1}}a^{ni_{1}}b^{nj_{1}}$$

and

$$x^{n}y = c^{nk_1 + k_2 - \frac{n(n-1)}{2}i_1j_1 - ni_2j_1}a^{ni_1 + i_2}b^{nj_1 + j_2}.$$

Also we obtain

$$yx^n = c^{nk_1+k_2-\frac{n(n-1)}{2}i_1j_1-ni_1j_2}a^{ni_1+i_2}b^{nj_1+j_2}.$$

We know that G is n-central if and only if $x^n y = yx^n$, for all $x, y \in G$. Furthermore by uniqueness of presentation of $x^n y$ and yx^n , we see that $x^n y = yx^n$ if and only if

$$nk_1 + k_2 - \frac{n(n-1)}{2}i_1j_1 - ni_2j_1 \equiv nk_1 + k_2 - \frac{n(n-1)}{2}i_1j_1 - ni_1j_2 \ (mod \ p^{\gamma}).$$

This is equivalent to

$$n(i_1j_2 - i_2j_1) \equiv 0 \pmod{p^{\gamma}}.$$

Now since this holds for all $x, y \in G$, $p^{\gamma} \mid n$.

Case 2. Let $G \cong \langle a \rangle \rtimes \langle b \rangle$, where $[a,b] = a^{p^{\alpha-\gamma}}$, $|a| = p^{\alpha}$, $|b| = p^{\beta}$, $|[a,b]| = p^{\gamma}$, $\alpha, \beta, \gamma \in \mathbb{N}$, $\alpha \geq 2\gamma$, $\beta \geq \gamma$. Also, let $x = a^{i_1}b^{j_1}$, $y = a^{i_2}b^{j_2}$ be two elements of G, where $0 \leq i_1, i_2 < p^{\alpha}$ and $0 \leq j_1, j_2 < p^{\beta}$. By using Lemma 1.1, we get

$$x^{n}y = a^{ni_{1}+i_{2}-\frac{n(n-1)}{2}p^{\alpha-\gamma}i_{1}j_{1}-np^{\alpha-\gamma}i_{2}j_{1}}b^{nj_{1}+j_{2}}$$

and

$$yx^n = a^{ni_1+i_2-\frac{n(n-1)}{2}p^{\alpha-\gamma}i_1j_1-np^{\alpha-\gamma}i_1j_2}b^{nj_1+j_2}.$$

Hence by uniqueness of presentation of $x^n y$ and yx^n , the statement $x^n y = yx^n$ is equal to

$$n(i_1j_2 - i_2j_1) \equiv 0 \ (mod \ p^{\gamma})$$

for all $x, y \in G$. So, we get the desired result.

Case 3. Let $G \cong (\langle c \rangle \times \langle a \rangle) \rtimes \langle b \rangle$, where $[a,b] = a^{p^{\alpha-\gamma}}c$, $[c,b] = a^{-p^{2(\alpha-\gamma)}}c^{-p^{\alpha-\gamma}}$, $|a| = p^{\alpha}$, $|b| = p^{\beta}$, $|c| = p^{\sigma}$, $|[a,b]| = p^{\gamma}$, $\alpha, \beta, \gamma, \sigma \in \mathbb{N}$, $\beta \geq \gamma > \sigma \geq 1$, $\alpha + \sigma \geq 2\gamma$. By the presentation of elements of G, we have $x = c^{k_1}a^{i_1}b^{j_1}$ and $y = c^{k_2}a^{i_2}b^{j_2}$ where $0 \leq k_1, k_2 < p^{\sigma}$, $0 \leq i_1, i_2 < p^{\alpha}$ and $0 \leq j_1, j_2 < p^{\beta}$.

$$x^{n}y = c^{nk_{1}+k_{2}+\frac{n(n-1)}{2}p^{\alpha-\gamma}k_{1}j_{1}-\frac{n(n-1)}{2}i_{1}j_{1}+np^{\alpha-\gamma}k_{2}j_{1}-ni_{2}j_{1}}$$

$$\times a^{ni_{1}+i_{2}+\frac{n(n-1)}{2}p^{2(\alpha-\gamma)}k_{1}j_{1}-\frac{n(n-1)}{2}p^{\alpha-\gamma}i_{1}j_{1}+np^{2(\alpha-\gamma)}k_{2}j_{1}-np^{\alpha-\gamma}i_{2}j_{1}}$$

$$\times b^{nj_{1}+j_{2}}$$

and

$$yx^{n} = c^{nk_{1}+k_{2}+\frac{n(n-1)}{2}p^{\alpha-\gamma}k_{1}j_{1}-\frac{n(n-1)}{2}i_{1}j_{1}+np^{\alpha-\gamma}k_{1}j_{2}-ni_{1}j_{2}}$$

$$\times a^{ni_{1}+i_{2}+\frac{n(n-1)}{2}p^{2(\alpha-\gamma)}k_{1}j_{1}-\frac{n(n-1)}{2}p^{\alpha-\gamma}i_{1}j_{1}+np^{2(\alpha-\gamma)}k_{1}j_{2}-np^{\alpha-\gamma}i_{1}j_{2}}$$

$$\times b^{nj_{1}+j_{2}}.$$

By the above facts, we see that for all $x, y \in G$; $x^n y = y x^n$ if and only if the following system holds

$$\begin{cases} n(p^{\alpha-\gamma}(k_1j_2-k_2j_1)+i_2j_1-i_1j_2) \equiv 0 \pmod{p^{\sigma}} \\ n(p^{\alpha-\gamma}(k_1j_2-k_2j_1)+i_2j_1-i_1j_2) \equiv 0 \pmod{p^{\gamma}}. \end{cases}$$
(6)

Now let $p^{\gamma}|n$, then surely $p^{\sigma}|n$ and the above congruence system holds. Hence G will be n-central.

Conversely let G be an n-central group. So the system (6) must hold for all $x, y \in G$ such as $x = c^3 ab$ and $y = c^2 a^2 b$. Then we get

$$\begin{cases} n(p^{\alpha-\gamma}-1) \equiv 0 \pmod{p^{\sigma}} \\ n(p^{\alpha-\gamma}-1) \equiv 0 \pmod{p^{\gamma}}. \end{cases}$$

Hence $p^{\gamma}|n$.

References

- 1. M. R. Bacon, L. C. Kappe, The nonabelian tensor square of a 2-generator p-group of class 2, Arch. Math. **61**(1993), 508-516.
- 2. A. Sadeghieh, H. Doostie and M. Azadi, Certain numerical results on the Fibonacci length and nth-roots of Hamiltonian groups, International Mathematical Forum 4(39)(2009), 1923-1938.
- 3. A. Sadeghieh, H. Doostie, *The n-th roots of elements in finite groups*, Mathematical Sciences **2**(4)(2008), 347-356.
- 4. C. Delizia, A. Tortora and A. Abdollahi, Some special classes of n-abelian groups, International journal of Group Theory 1(2012), 19-24.

Mansour Hashemi

Faculty of mathematical sciences, University of Guilan, P.O.Box 41335-19141, Rasht, Iran.

Email: m_{-} hashemi@guilan.ac.ir

Mikhak Polkouei

Faculty of mathematical sciences, University of Guilan, P.O.Box 41335-19141, Rasht, Iran.

Email: mikhakp@yahoo.com