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n"-ROOTS AND n-CENTRALITY OF FINITE
2-GENERATOR p-GROUPS OF NILPOTENCY CLASS 2

M. HASHEMI * AND M. POLKOUEI

ABSTRACT. Here we consider all finite non-abelian 2-generator p-
groups (p an odd prime) of nilpotency class two and study the
probability of having n*"-roots of them. Also we find integers n
for which, these groups are n-central.

1. INTRODUCTION
Let n > 1 be an integer. An element a of group G is said to have
an n'-root b in G, if a = b™. The probability that a randomly chosen

element in G has an n'"-root, is given by
G"|

P.(G) =
|G|

where G" = {a € Gla = V", for some b € G} = {a"|x € G}. A.
Sadeghiech and H. Doostie in [3] computed the probability P,(G) for
Dihedral groups D,,, and Quaternion groups (Jom for every integer
m > 3. Also, in [2] the probability that Hamiltonian groups may have
n"-roots have been calculated.

Forn > 1, a group G is said to be n-central if [z",y] = 1 for all z,y € G.
In [1], some relations between n-abelian and n-central groups have been
investigated.

Suppose that H <1 G and there is subgroup K such that G = HK and
H N K = {e}, then G is said to be the semidirect product of H by K;
in symbol G = H x K. Clearly ift K <G, then H x K =2 H x K.
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First, we state the following Lemma without proof.

Lemma 1.1. If G is a group and G' C Z(G), then the following hold
for every integer k and u,v,w € G :

(1) [uv, w] = [u, w|[v, w] and [u,vw] = [u, v]u, w|;

(ii) [u*, v] = [u, v*] = [u, v]*;

(i1) (uwv)* = ukFvk[v, u]FE—1/2,

The following theorem classifies all finite non-abelian 2-generator p-
groups of nilpotency class two (p # 2).

Theorem 1.2. [1]| Let G be a finite non-abelian 2-generator p-group of
nilpotency class two (p an odd prime). Then G is isomorphic to exactly
one of the following three types of groups:
(1) G = ({c) x(a))»(b), where [a,b] = ¢, [a,c] = [b,c] =1, |a] = p*~,
bl =p" le| =p", @, 8,7 EN, a2 >,
(2) G = (a) x (b), where [a,0] = a” ", |a| = p, b] = p”, |[a,}]| =
pa, By eEN a>2y B2
(3) G = ({¢)x(a))x(b), where [a,b] = a?" "¢, [¢,b] = a P P77,
lal = p* o] = p°, I = p7, |[a,b]] = p", @,B,7,0 € N,
B>2y>0>1, at+o>2y.

Remark 1.3. By the relators given in each case, every element x of the
above classes of groups can be uniquely presented as = c*a’/ where
0<k<|c|,0<i<p*and0<j<p’

In Section 2, we consider all finite nonabelian 2-generator p-groups
(p # 2) of nilpotency class two and study the probability of having
nf-roots of them. Section 3 is devoted to investigating n-centrality of
these groups.

2. THE PROBABILITY OF HAVING n'"-ROOTS

In this section for each class of finite non-abelian 2-generator p-
groups (p # 2) of nilpotency class two, we find the probability of having
n'-roots. Here for m € Z, by m* we mean the arithmetic inverse of
m.

Theorem 2.1. Let G = ((¢) x (a)) x (b), where [a,b] = ¢, [a,c] =
b,c] =1, lal =p®, b =p", |c| =p", &, 8,7 €N, a > f > 7. Then
1

ps+t+w

Pn(G> =

where (n,p*) = p*, (n,p°) = p' and (n,p?) = p®.
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Proof. Let x = c*a'’ be an element of G where 0 < k < p?,0 <@ < p®
and 0 < j < p?. If . = (2,)" when x; = Mab' € G, 0 < ky < p?,
0<i; <p®and 0 < j, <p®, then we must have

Fa't = (Ma )"

gy nin pngy
2 a™t ",

an:1 —

By uniqueness of presentation of elements of GG, we obtain
niy =i (mod p*)
nji = j (mod p°) (1)

nky — "("2_1)1'1]'1 =k (mod p7).

Now let (n,p®) = p°. The first congruence of the system (1) has the
solution

= () (mod )

if and only if p* | i. Then
ie{p’2p%, .. "D}
This means that i has p®~* choices. Similarly if (n,p®) = p', then by
the second equation of System (1) we get
jed{ 2, ")
So j admits p®~* values.

Now suppose (n,p?) = p“. Since p # 2, clearly for all n € N we have
pv | ”("T_l) Hence from the third equation of system (1), we obtain

b= (o (S i+ () () (mod 57

provided that

ke {p“ 2p°, ... ,p"""p"}.
Therefore we have p?~* choices for k. By the above facts, | G | is
equal to

| {cFa't? | i€ {p® ..., p°p*}, 5 € {p', ... p° ' ke {p¥,....p7 P }} |
Thus

’ G" ‘: po‘_s X pﬁ_t X p’Y—w — pa+,3+’y—s—t—w

and
|G l=la|x|b|x|c|=p*F*.
So e .
P.(G) = = .
( ) |G| ps+t+w
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To continue, we find the probability of having n'*-root for second
class of groups of Theorem 1.2.

Theorem 2.2. Let G = (a) x (b), where [a,b] = a" ", |a| = p°,
bl =p", |la.b]| =p", o, 8.7 €N, a > 2y, B > . Then

where (n,p®) = p* and (n,p?) = p'.

Proof. Let © = a't/ € G™ where 0 < i < p* and 0 < j < p°. If
1 = a'W € G, 0 <i; < p*and 0 < j; < p? such that x = (z1)",
then by uniqueness of presentation of elements of G ( See Remark 1.3)
we must have

at = (a"p)"

niy— "G 1 g
= a 2 b,

So
{ nj1 = j (mod p°)
ni; — @iljl =1 (mod p%). (2)

Now, we consider two cases:

Case 1. Suppose p? | n. Then the above system changes to

J=0
niy =1 (mod p®).
If (n,p*) = p°, then

n l
i1 = (—=)"(—) (mod p*~*
1= ()5 )
is the solution of system (2) if and only if p°® | i. So
ie{p’2p’, ..., p" P}
Therefore in this case
| G" |
P(G) =
xey
_ @) lie{p,2p, .. p*p*}j =0} |
[a|x[0]
pOé—S 1 1

pa+6 - szrB - ps+t'
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Case 2. Let p® t n and (n,p®) = p'. Then the first equation of the
System (2) has solution

N J _
J1=(7) (Z;) (mod p”~*) (3)
if p' | j. Then
je{p 2, ... p" '}

Now let (n,p*) = p°. For finding the number of choices of i, we have
to consider two subcases:

Subcase 2.a. Let n be an even integer, then in second congruence of
system (2) we have

gil (2 —(n—1)j1) =1 (mod p*).

S

Since (p®, %) = p°,

) () (mod 5%,

(2= (n—1)j1) = (

Now by replacing j = p'*! in Congruence (3), we get
. n., _
J1 = p(5)" (mod p™").
Then 2 — (n — 1)j; and p®~* are prime to each other. So we can write
n {
)" (2= (n = 1)j)" (=) (mod p*)
2p* p?

il = (
provided that

i€{p®2p° ..., p" P}
This means that there are p®~* solutions for i.

Subcase 2.b. Let n be an odd integer, then
(n—1)
2
So by considering j = p'*!, we get that

niy (1 — J1) =i (mod p%).

. n. . _
lep(];) (mod p°~).

Hence we can write
, n., n—1). ?

o= (2 D

p
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This obtained 4 is a solution of the second equation of system (2) if
and only if

ie{p®2p% ... 0" P}
Now since in both subcases we have p®~* choices for i, we get
| G" |
_ G liefp, .. 0 ptje{r’, - 0
la|x[b]
pa—l—ﬂ—s—t 1
poz+6 - szrt'

OJ

Finally for third class of groups of Theorem 1.2, we have the following
theorem.

Theorem 2.3. Let G = ({(c) x (a)) x (b), where [a,b] = a "¢, [c,b] =
a e al =, (B = 97, Je| = p°, [[a,b)] = P, @, B,7,0 €N,
B>y>0c>1, a+0c>2y. Then

1
ps+t+u

Pn(G> =
where (n,p®) = p*, (n,p®) = p* and (n,p°) = p*.
Proof. Let x = c*a’t/ be an element of G” where 0 < k < p°,0 < i < p®
and 0 < j < pP. If 2y = Fahbt € G where 0 < ky < p°, 0 < 4; < p®,
0 <j; <p? and x = ()", then we must have
kol = (g

'n(n 1)
an1

11]14_"(" 1)) pe ’Ykljlan'il—M a— 721]1+M 2(a— ’Y)kljlbn‘h

So by uniqueness of presentation of elements of G' (See Remark 1.3),
we obtain

nj —j (mod ”)
nk; — )Zj—l— ( a”ﬁ]l—k(mOdPH)
m’l—"(Ql)pO‘ Y + ( L 2(a”’k131—z(m0dp)

For solution of this system, we COHSlder two cases:

Case 1. Let (n,p®) = p' and t # 3. Then the first congruence of
System (4) has the solution

= (2 mod p°~"
=) ) (mod po=)
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if and only if p* | j. So

je{ph2', )
and consequently we have p’~* choices for j. Now let (n, p®) = p* and
(n,p”) = p*. For solving congruences, we consider two cases. First let
n be an even integer, then we can write

n .. o— . _ o
5 (2k1 = (n = L)irjy + (n = Dp* kyji) =k (mod p°)

Since p # 2, we have (3,p”) = p“. Therefore

.o a— i k LN o—u
2ky — (n = 1)iyjr + (n — 1)p* ki ji = ﬁ(ﬂ) (mod p”™*)

provided that p* | k. So

k . _
ﬁ(i)* + (n — 1)iyj1 (mod p™™).

kq(2 —1)p*7
1(2+ (n )7 51) 9t

Since p | j, we have

_ iy R (i)
k1= (24 (n—1)p" ") oo \ 2
+(24+ (n—1)p*751)" (n — 1)iygr (mod p”~")  (5)
if
ke {p“,Qp“, .. ,pa_“p“}.

Hence there are at most p°~* choices for k. On the other hand, we
write

n

2
Since (%,p) = p°®, we obtain

(2@'1 —(n—=1)p" Viyj + (n— 1)p2(0‘_7)k1j1) =i (mod p%).

n 1
*— (mod p*?%).
e )

provided that p® | i. By replacing the obtained k;, in the above con-
gruence we get

: a—vy,; a—7) ; a— ; *k n\"
20 = (1= Ui+ (1= D (24 (= ) ()

2iy — (n — 1)p* iy + (n — Dp* @k 5y = (

n 1
)*— (mod p®~°).
2p*7 p?

+(n = 1P (2 4 (n = 1)p*T)") = (
Therefore
i1 (2 (0= D"+ (0= PR 4 (0 - Dp™ 7)) =

- - a—y *k n ) a—s
)*_S_(n—l)pQ(a_’y)]l(Q—i—(n—l)p 7j1) o <%) (mod p*~*).
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Since p | (n — 1)p®7j; and p | (n — 1)?p*@=7);2 we can write
. o o e
i1=(2— (n—1Dp" i+ (n— )" 2+ (n— Dp* 7)) o
n\" . o) - RISV
x ( ) —(2=(n—=1p* i+ (n— P2 + (n— 1)p* 7))

*

2p°

Mn—nf@ﬂwmz+m—1m“w3§(i%)<mwp%ﬂ
provided that p® | i. Now clearly 7; is a solution of this system if and
only if

1€ {ps,Zps, . ,pafs.ps}.
Hence we must have exactly p®~* choices for 7. By replacing i; in
congruence (5), we get

n

ki=(2+ - 1)pa“’j1)*£ (ﬁ) + (24 (n— 1)pa*7j1)* (n—1)7

a— a—) ; a—y 5 \*)* n )
X (2= (n = 1)p™ i+ (n = 1Pp" V(2 + (n = 1)p* 7)) (2ps)

Xé_(z + (TL — 1)pa77j1)* (n—l)zj%pQ(a*’Y) (2 + (TL . 1)pa77)*
X (2= (n— Dp™ 1 + (n— 1?22+ (0 — 1)p 1))
kE [ n
X—\ 5 mod p°*).
p (Qp“) ( )

So we conclude that k can be chosen in exactly p°~* ways. Therefore
| Gn |: pa—s % pﬁ—t % pcr—u — pa+ﬂ+o—s—t—u
and
|G l=lalx[b]x|c|=p**.
Then we get the desired result. When n is an odd integer, the theorem
can be proved similarly.

Case II. Let (n,p”) = p'. Then clearly p? | j and since 0 < j < p?,
j = 0. Then the second and third congruence of System (4) will be
proved similar to the proof of Case I. In this case we obtain

| G" = {(i,5,k) |ie{p’.. . 0" P}, i =0,ke{p",...p7 "p"}}|.

Hence
B | Gn ‘ B pa—l—a—s—u 1 1

P"(G) - ’ G ’ - patbto - phtstu - ps+t+u'
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3. M-CENTRALITY

In this section, we again consider all finite non-abelian 2-generator
p-groups (p # 2) of nilpotency class two and this time we investigate
n-centrality for them.

Theorem 3.1. Let G be a finite non-abelian 2-generator p-group of
nilpotency class two. Then for n > 1, the group G is n-central if and

only if p7 | n.

Proof. According to the Theorem 1.2, we consider three cases:

Case 1. Let G = ({c) x (a)) x (b), where [a,b] = ¢, [a,c] = [b,c] =1,
la] = p, |b| = p°, |c] = p7, a,8,7y €N, a > 3 > 5. Also let x =
capt and y = a2 be two elements of G where 0 < ki, ks < p?,
0 <iy,ip < p® and 0 < jy, jo < p°. Then by Lemma 1.1, we get

n nkl—wiljl nij 1nji
" =c 2 a™'b

and
_nn=1). . . . . . . .
xny — an1+k2 51171 nlg]lan11+lgbnj1+j2'

Also we obtain

nyn — an‘l-i-k‘g—%iljl—nhjganil—kigbnj1+j2.

We know that G is n-central if and only if 2"y = yz™, for all z,y € G.
Furthermore by uniqueness of presentation of ™y and yx", we see that
2™y = ya™ if and only if

n(n —1) n(n—1

nk1+k2—Ti1j1—ni2j1 = nk’1+k‘2—T)

This is equivalent to

1171412 (mod pv)‘

n(i1j2 — i2j1) = 0 (mod p7).
Now since this holds for all x,y € G, p? | n.

Case 2. Let G = (a) x (b), where [a,b] = a”" ", [a] = p®, [b] = p”,
[a,0]] =p7, a, 8,7 €N, @ > 27, > 7. Also, let x = a" V"', y = a”b””
be two elements of G, where 0 < iy, < p* and 0 < j;, 72 < p°. By
using Lemma 1.1, we get

'y = a"il"'i?_%w*”lﬁ—npa77i2j1bnj1+j2
and

. . —1 ——e e —— e . . .
ya" = amﬁ-zz—%pa Yirj1—np® Virja pji+iz
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Hence by uniqueness of presentation of 2"y and yz”, the statement
x™y = ya™ is equal to

n(i1jz — i251) = 0 (mod p”)
for all z,y € G. So, we get the desired result.
Case 3. Let G = ({c¢) x {(a)) x (b), where [a,b] = a?" "¢, [c,b] =
a7 al = p*, o = pP, || = p, |[a,b]] = P, @, B,7,0 €N,
B >~v>0>1 a+ o > 2y. By the presentation of elements of

G, we have = ca"b" and y = *2a2b? where 0 < ki, ky < p°,
0 <iy,ip < p® and 0 < jy, jo < pP°.

xny — an1+k2+7"(n2_1)p"_”ﬂjl*n(";l)i1j1+np°‘_”k2j1*m'2j1
a1 +i2+7n(n{1)p2(°‘77>k1j1—771(”271)1)“7”1]'1 +np?(@ =N kgj1 —np®Vigjy

% bnj1+j2

and

o ankah+ P ek jy = 2y np® k2 —nid g

yxr

ni1+i2+Ln{”pﬂ"‘*”kljl— n(n;1)p°‘77i1j1+np2<a77)kljz—npafwiué

Xa
anj1+j2

By the above facts, we see that for all z,y € G; 2"y = ya" if and only
if the following system holds

(mod p”)

=0
=0 (mod p"). (6)

n(p* 7 (k12 — kaj1) + i2g1 — 1J2)

n(p® Y (k1ja — koj1) + i2J1 — i1J2)
Now let p7|n, then surely p”|n and the above congruence system holds.
Hence G will be n-central.

Conversely let G be an n-central group. So the system (6) must hold
for all 2,y € G such as x = c®ab and y = c®a®b. Then we get

{ n(p®>" —1) =0 (mod p°)
n(p*7 —1) =0 (mod p").

Hence p7|n.
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