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A CLASS OF J-QUASIPOLAR RINGS

M. B. CALCI, S. HALICIOGLU*, AND A. HARMANCI

Abstract. In this paper, we introduce a class of J-quasipolar
rings. Let R be a ring with identity. An element a of a ring R is
called weakly J-quasipolar if there exists p2 = p ∈ comm2(a) such
that a + p or a− p are contained in J(R) and the ring R is called
weakly J-quasipolar if every element of R is weakly J-quasipolar.
We give many characterizations and investigate general proper-
ties of weakly J-quasipolar rings. If R is a weakly J-quasipolar
ring, then we show that (1) R/J(R) is weakly J-quasipolar, (2)
R/J(R) is commutative, (3) R/J(R) is reduced. We use weakly J-
quasipolar rings to obtain more results for J-quasipolar rings. We
prove that the class of weakly J-quasipolar rings lies between the
class of J-quasipolar rings and the class of quasipolar rings. Among
others it is shown that a ring R is abelian weakly J-quasipolar if
and only if R is uniquely clean.

1. Introduction

Throughout this paper all rings are associative with identity unless
otherwise stated. Given a ring R, the symbol U(R) and J(R) stand
for the group of units and the Jacobson radical of R, respectively.

Let R be a ring and a ∈ R. We adopt the notations comm(a) = {b ∈
R | ab = ba} while the second commutant comm2(a) = {b ∈ R | bc = cb
for all c ∈ comm(a)} and Rqnil = {a ∈ R | 1 + ax is invertible for each
x ∈ comm(a)}. An element a of a ring R is called quasipolar (see [8])
if there exists p2 = p ∈ R such that p ∈ comm2(a), a + p ∈ U(R) and

MSC(2010): Primary: 16S50, Secondary: 16S70, 16U99

Keywords: Quasipolar ring, J-quasipolar ring, weakly J-quasipolar ring, uniquely clean

ring, feckly reduced ring, directly finite ring

Received: 13 October 2015, Accepted: 22 November 2015.

∗Corresponding author .
1



2 M. B. CALCI, S. HALICIOGLU*, AND A. HARMANCI

ap ∈ Rqnil. Any idempotent p satisfying the above conditions is called
a spectral idempotent of a, and this term is borrowed from spectral
theory in Banach algebra and it is unique for a. Quasipolar rings have
been studied by many ring theorists (see [5],[7], [8] and [12]). Recently,
J-quasipolar rings are introduced in [6]. For an element a of a ring
R, if there exists p2 = p ∈ comm2(a) such that a + p ∈ J(R), then
a is called J-quasipolar and a ring R is called J-quasipolar, if every
element of R is J-quasipolar. It is proved that every J-quasipolar ring
is quasipolar.

Motivated by these classes of polarity versions of rings, we introduce
weakly J-quasipolar rings, generalizing J-quasipolar rings. Through-
out this paper, some basic properties of weakly J-quasipolar ring are
studied, also examples and counter examples are given. We show that
the class of weakly J-quasipolar rings lies properly between the class of
J-quasipolar rings and the class of quasipolar rings. It is proved that
R is J-quasipolar if and only if R is weakly J-quasipolar and 2 ∈ J(R).
Then some of the main results of J-quasipolar rings are special cases
of our results for this general setting. Given a ring R, if Mn(R) and
Tn(R) denote the ring of all n×n matrices and triangular matrices over
R, then we investigate necessary and sufficient conditions as to weakly
J-quasipolarity of T2(R) over a commutative local ring R. Further, it
is proven that Mn(R) is not weakly J-quasipolar for n ≥ 2. Finally, we
determine under what conditions a 2 × 2 matrix over a commutative
local ring is weakly J-quasipolar.

In what follows, N and Z denote the set of natural numbers, the
ring of integers and for a positive integer n, Zn is the ring of integers
modulo n. The notations detA and trA denote the determinant and
the trace of a square matrix A over a commutative ring and In denotes
the n× n identity matrix.

2. Weakly J-Quasipolar Rings

In this section, we introduce a class of quasipolar rings which is
a generalization of J-quasipolar rings. By using weakly J-quasipolar
rings, we obtain more results for J-quasipolar rings. It is clear that
every J-quasipolar ring is weakly J-quasipolar and we supply an ex-
ample to show that the converse does not hold in general (see Example
2.9). Moreover, it is shown that the class of weakly J-quasipolar rings
lies strictly between the class of J-quasipolar rings and the class of
quasipolar rings (see Example 2.9, Corollary 2.11 and Example 2.12).
We investigate general properties of weakly J-quasipolar rings.
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Definition 2.1. Let R be a ring and a ∈ R. The element a is called
weakly J-quasipolar if there exists p2 = p ∈ comm2(a) such that a+p ∈
J(R) or a − p ∈ J(R). The idempotent which satisfies the above
condition is called a weakly J-spectral idempotent and R is called weakly
J-quasipolar if every element of R is weakly J-quasipolar.

Lemma 2.2 shows that weakly J-quasipolar elements and rings are
abundant.

Lemma 2.2. Let R be a ring. Then we have the followings.

(1) Every idempotent in R is weakly J-quasipolar.
(2) An element a ∈ R is weakly J-quasipolar if and only if −a ∈ R

is weakly J-quasipolar.
(3) Every element in J(R) is weakly J-quasipolar.
(4) Boolean rings are weakly J-quasipolar.
(5) J-quasipolar rings are weakly J-quasipolar.

In the sequel, we state elementary properties of weakly J-quasipolar
elements and weakly J-quasipolar rings.

Lemma 2.3. Let R be a ring. If u ∈ U(R) is weakly J-quasipolar,
then 1 is the weakly J-spectral idempotent of u.

Proof. Let u ∈ U(R) be weakly J-quasipolar, so u + p ∈ J(R) or
u − p ∈ J(R) such that p2 = p ∈ comm2(u). If u − p ∈ J(R), then
u−1u−u−1p = 1−u−1p ∈ J(R). Hence, u−1p ∈ U(R) and so p ∈ U(R).
Thus, we have p = 1. In case u+ p ∈ J(R), the proof is similar. �

By using the concept of J-quasipolarity, we obtain a characterization
for local rings.

Proposition 2.4. Let R be a weakly J-quasipolar ring. Then R is a
local ring if and only if R has only trivial idempotents.

Proof. Assume that R is a weakly J-quasipolar ring and has only trivial
idempotents. Let a ∈ R, so a+ 1 ∈ J(R) or a− 1 ∈ J(R) or a ∈ J(R).
If a+ 1 ∈ J(R) or a− 1 ∈ J(R), then a ∈ U(R). In the last condition,
a ∈ J(R). Consequently, R is a local ring. The converse statement is
clear. �

Lemma 2.5. Let R be a ring. If a ∈ R and u ∈ U(R), then a is weakly
J-quasipolar if and only if u−1au is weakly J-quasipolar.

Proof. Assume that a is weakly J-quasipolar. Then there exists p2 =
p ∈ comm2(a) such that a − p ∈ J(R). If q is taken as q = u−1pu,
then q2 = q ∈ R and u−1au − u−1pu = u−1(a − p)u ∈ J(R). Let b ∈
comm(u−1au), then (u−1au)b = b(u−1au) and so a(ubu−1) = (ubu−1)a.
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Thus ubu−1 ∈ comm(a). Since p ∈ comm2(a), (ubu−1)p = p(ubu−1).
Hence b(u−1pu) = (u−1pu)b. Consequently, u−1pu ∈ comm2(u−1au)
and so u−1au is weakly J-quasipolar. Conversely, assume that u−1au−
q ∈ J(R), so a − uqu−1 ∈ J(R). Also (uqu−1)2 = uqu−1 ∈ comm2(a).
If a+ p ∈ J(R), then proof is similar. �

The proof of Lemma 2.5 reveals that p is weakly J-spectral idempo-
tent of a if and only if u−1pu is the weakly J-spectral idempotent of
u−1au. We need the following lemma in order to prove Theorem 2.7.

Lemma 2.6. Let R be a ring. If a = j1−p ∈ J(R) or a = j2+p ∈ J(R)
is weakly J-quasipolar decomposition of a in R, then annl(a) ⊆ annl(p)
and annr(a) ⊆ annr(p).

Proof. If r ∈ annl(a), then ra = 0. Assume that a + p = j1 ∈ J(R)
such that p2 = p ∈ comm2(a). Then rp = r(j1 − a) = rj1 and so
rp = rj1p = rpj1. Hence rp(1−j1) = rp−rpj1 = 0. Since 1−j1 ∈ U(R),
r ∈ annl(p). If r ∈ annr(a), then ar = 0. Thus pr = (j1−a)r = j1r and
so pr = pj1r. Since a ∈ comm(a) and p ∈ comm2(a), ap = pa. Hence
(j1 − p)p = p(j1 − p) and so j1p = pj1. Therefore pr = pj1r = j1pr.
Also (1−j1)pr = pr−j1pr = 0. Because of 1−j1 ∈ U(R), r ∈ annr(p).
If a − p = j2 ∈ J(R) such that p2 = p ∈ comm2(a), then the proof is
similar to above. �

Theorem 2.7. If R is weakly J-quasipolar, then so is fRf for all
f 2 = f ∈ R.

Proof. For every a ∈ fRf there exists p ∈ comm2(a) such that a− p ∈
J(R) or a+ p ∈ J(R). Let a+ p = j1 ∈ J(R) or a− p = j2 ∈ J(R). By
Lemma 2.6, we have 1− f ∈ annl(a)∩ annr(a) ⊆ annl(p)∩ annr(p) =
R(1− p) ∩ (1− p)R = (1− p)R(1− p). Then pf = p = fp and so a =
fj1f − fpf , (fpf)2 = fpf and fj1f ∈ fJ(R)f = J(fRf). Lastly, let
xa = ax and x ∈ fRf , so x(fpf) = (fpf)x. If a−p = j2 ∈ J(R), then
proof is similar. Consequently, a is weakly J-quasipolar in fRf . �

By the definition of weakly J-quasipolar rings, it is clear that every
J-quasipolar ring is weakly J-quasipolar. We now investigate under
what condition a weakly J-quasipolar ring is J-quasipolar.

Proposition 2.8. A ring R is J-quasipolar if and only if R is weakly
J-quasipolar and 2 ∈ J(R).

Proof. Let R be a weakly J-quasipolar ring and 2 ∈ J(R). If a + p ∈
J(R) such that p2 = p ∈ comm2(a), then it is clear. Let a− p ∈ J(R)
and p2 = p ∈ comm2(a). Since 2 ∈ J(R), a − p + 2p ∈ J(R) and so a
is J-quasipolar. The converse is clear. �
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The next example illustrates that there are weakly J-quasipolar rings
but not J-quasipolar.

Example 2.9. The ring Z6 is weakly J-quasipolar but not J-quasipolar.

Proof. It is obvious that Z6 is weakly J-quasipolar. Since 1 + 1 /∈
J(Z6) = 0, by Proposition 2.8, Z6 is not J-quasipolar. �

In [6], it is shown that every J-quasipolar element is quasipolar. We
obtain the following result for this general setting.

Proposition 2.10. Every weakly J-quasipolar element in a ring R is
quasipolar.

Proof. Let a ∈ R be weakly J-quasipolar. Then there exists p2 = p ∈
comm2(a) such that a + p ∈ J(R) or a − p ∈ J(R). If a + p ∈ J(R),
then a is quasipolar from [6, Proposition 2.4]. If a−p ∈ J(R) such that
p2 = p ∈ comm2(a), then a+ (1− p) ∈ U(R) and also (a− p)(1− p) =
a(1− p) ∈ J(R) ⊆ Rqnil. Therefore a is a quasipolar element. �

Corollary 2.11. If R is weakly J-quasipolar, then it is quasipolar.

The converse statement of Corollary 2.11 is not true in general, i.e.,
there are quasipolar rings but not weakly J-quasipolar.

Example 2.12. Let R = Z(5) be the localization ring of Z at the
prime 5. Then R is a local ring and thus quasipolar by [12, Corollary
3.3]. Since 1

3
∈ Z(5) is not weakly J-quasipolar, Z(5) is not weakly

J-quasipolar.

By Example 2.9, Corollary 2.11 and Example 2.12, it is clear that
the class of weakly J-quasipolar rings lies strictly between the class of
J-quasipolar rings and the class of quasipolar rings.

Proposition 2.13. Any weakly J-quasipolar element a ∈ R has a
unique weakly J-spectral idempotent.

Proof. Assume that p, q are weakly J-spectral idempotents of a ∈ R.
Case 1: If a + p ∈ J(R) and a + q ∈ J(R), then 1 − p and 1 − q are
spectral idempotents of −a by the proof of Proposition 2.10. By [6], the
spectral idempotent of a and −a is equal. Also by [8, Proposition 2.3],
the spectral idempotent of a is unique, so we obtain that 1−p = 1− q.
Then p = q.
Case 2: Assume that a + p ∈ J(R) and a − q ∈ J(R). Then 1 − p is
spectral idempotent of −a and 1− q is spectral idempotent of a. The
remaining proof is similar to Case 1.
Case 3: Assume that a − p ∈ J(R) and a + q ∈ J(R), then similarly
p = q.
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Case 4: Assume that a − p ∈ J(R) and a − q ∈ J(R), then similarly
p = q. �

In [2], an element of a ring is called strongly J-clean provided that
it can be written as the sum of an idempotent and an element in its
Jacobson radical that commute. A ring is strongly J-clean in case each
of its elements is strongly J-clean. From the definition of a strongly
J-clean ring, one may suspects that every weakly J-quasipolar ring is
strongly J-clean. But the following example erases possibility.

Example 2.14. It is clear that the ring Z3 is weakly J-quasipolar.
Since 2 /∈ J(Z3), it is not strongly J-clean by [2, Proposition 3.1].

Recall that, a ring R is called periodic if for each x ∈ R, there exists
distinct positive integers m,n depending on x, for which xn = xm. For
an easy reference, we mention Lemma 2.15 which is one of Jacobson’s
theorem given in [9] relating to periodicity and commutativity of the
rings.

Lemma 2.15. Let R be a ring in which for every a ∈ R there exists
an integer n(a) > 1, depending on a such that an(a) = a, then R is
commutative.

We now give a useful result to determine whether R is weakly J-
quasipolar.

Theorem 2.16. If a ring R is weakly J-quasipolar, then R/J(R) is a
periodic ring which has three period and R/J(R) is commutative.

Proof. Let R be weakly J-quasipolar and r ∈ R. So r + p ∈ J(R) or
r − p ∈ J(R) such that p2 = p ∈ comm2(a). Clearly, r = p or r = −p
and p2 = p. If r = p, then r2 = r and so r3 = r. If r = −p, then it is
clear that r3 = r. Hence R/J(R) is a periodic ring which has period
three. By Lemma 2.15, R/J(R) is commutative. �

The following example shows that the converse statement of Theorem
2.16 is not true in general.

Example 2.17. It is clear that the ring Z is commutative, J(Z) = 0
and Z/J(Z) ∼= Z. But Z is not weakly J-quasipolar.

By Theorem 2.16, we obtain the following important result for weakly
J-quasipolar rings.

Corollary 2.18. If R is weakly J-quasipolar, then R/J(R) is weakly
J-quasipolar.

Proof. Proof is clear from Lemma 2.2 (1) and (2). �
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Recall that a ring R is said to be clean if for each a ∈ R there exists
e2 = e ∈ R such that a − e ∈ U(R). According to Nicholson and
Zhou [11], a ring R is said to be uniquely clean if for each a ∈ R there
exists unique idempotent e ∈ R such that a − e ∈ U(R). In [6], it
is proved that a ring R is uniquely clean if and only if R is abelian
(i.e., each idempotent of R is central) J-quasipolar. In this direction
we generalize this result for weakly J-quasipolar rings.

Theorem 2.19. A ring R is abelian weakly J-quasipolar if and only if
R is uniquely clean.

Proof. Given a ∈ R, then −a ∈ R. Hence −a+ p ∈ J(R) or −a− p ∈
J(R) such that p2 = p ∈ R. If −a+p ∈ J(R), so a is uniquely clean. If
−a− p ∈ J(R), then a− (1− p) ∈ U(R).Uniqueness of the idempotent
p follows from Proposition 2.13. Therefore R is a uniquely clean ring.
The converse is clear by [6, Theorem 2.7]. �

The next example illustrates that “abelian” condition is not super-
fluous in Teorem 2.19.

Example 2.20. The matrix ring T2(Z2) is weakly J-quasipolar, but
not abelian. By [11, Lemma 4], T2(Z2) is not a uniquely clean ring.

In [1], Ungor et al. introduced and studied a new class of reduced
rings (i.e., it has no nonzero nilpotent elements). A ring R is called
feckly reduced if R/J(R) is a reduced ring. In this direction we show
that every weakly J-quasipolar ring is feckly reduced.

Theorem 2.21. If R is a weakly J-quasipolar ring, then it is feckly
reduced.

Proof. Let R be weakly J-quasipolar and r2 = 0. Therefore there
exists p2 = p ∈ comm2(r) such that r + p ∈ J(R) or r − p ∈ J(R). If
r − p ∈ J(R), then r(r − p) = r2 − rp ∈ J(R). Since r2 = 0 ∈ J(R),
rp ∈ J(R). Also (r − p)p = rp − p ∈ J(R). Hence p ∈ J(R) and so
p = 0. Thus r ∈ J(R) and R/J(R) is reduced. If r + p ∈ J(R), then
similarly r ∈ J(R) and R/J(R) is reduced. Consequently, R is a feckly
reduced ring. �

Let J ](R) denote the subset {x ∈ R | ∃n ∈ N such that xn ∈ J(R)}
of R. It is obvious that J(R) ⊆ J ](R). Weakly J-quasipolar rings play
an important role for the reverse inclusion.

Corollary 2.22. If R is a weakly J-quasipolar ring, then J(R) = J ](R)

Proof. Let R be a weakly J-quasipolar ring. By Theorem 2.21, R is
feckly reduced and so J(R) = J ](R) from [1, Proposition 2.6]. �
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The following result follows from Corollary 2.22.

Corollary 2.23. If R is a J-quasipolar ring, then J(R) = J ](R).

Corollary 2.22 is helpful to show that a ring is not weakly J-quasipolar.

Example 2.24. Let R denote the ring M2(Z2). Then

J ](R) =

{[
0 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
1 1
1 1

]}
and J(R) =

{[
0 0
0 0

]}
. By Corollary 2.22, R is not weakly J-quasipolar.

Let R be a ring and a, b ∈ R. Then R is called directly finite, if
ab = 1 then ba = 1. It is well known that R is directly finite if and
only if R/J(R) is directly finite.

Proposition 2.25. If a ring R is weakly J-quasipolar, then R is di-
rectly finite.

Proof. The proof is clear from [1, Proposition 4.8]. �

Since every J-quasipolar ring is weakly J-quasipolar, the following
result follows from Proposition 2.25.

Corollary 2.26. If R is a J-quasipolar ring, then R is directly finite.

In [10], strongly clean rings are introduced and studied. A ring R
is strongly clean, if for every a ∈ R there exists e2 = e ∈ R such that
a − e ∈ U(R) and ae = ea. At the end of that paper, the authors
ask some open questions. One of them is “ Is every strongly clean ring
directly finite?”. By Proposition 2.25, weakly J-quasipolar rings are
both strongly clean and directly finite.

3. Weakly J-quasipolarity of Matrix rings

In this section we study weakly J-quasipolarity of some matrix rings.
It is important to determine whether an individual matrix is weakly
J-quasipolar. In particular, we investigate necessary and sufficient con-
ditions weakly J-quasipolarity of the matrix ring T2(R) over a commu-
tative local ring R. We determine under what conditions a single 2× 2
matrix over a commutative local ring is weakly J-quasipolar.

We start with the obvious proposition.

Proposition 3.1. (1) Let R be a commutative local ring. Then A ∈
M2(R) is an idempotent if and only if either A = 0, or A = I2, or

A =

[
a b
c 1− a

]
where bc = a− a2.
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(2) Let R be a commutative local ring and P ∈ T2(R). Then P is an

idempotent if and only if P has a form

[
1 0
0 1

]
,

[
0 0
0 0

]
,

[
1 x
0 0

]
,[

0 x
0 1

]
for some x ∈ R.

Proof. (1) is clear from [3, Lemma 16.4.10] and (2) is straightforward.
�

Proposition 3.2. Let R be a commutative local ring. A=

[
a1 a2
0 a3

]
is weakly J-quasipolar in T2(R) if and only if one of the following holds:

(1) A ∈ J(T2(R)),
(2) A ∈ ±1 + J(T2(R)),

(3) A + P or A − P ∈ J(T2(R)) where P =

[
1 x
0 0

]
such that

x = (a1 − a3)−1a2,

(4) A − P or A + P ∈ J(T2(R)) where P =

[
0 x
0 1

]
such that

x = (a3 − a1)−1a2.

Proof. Assume that A is weakly J-quasipolar.
Case 1: Let A + P ∈ J(T2(R)) such that P 2 = P ∈ comm2(A).

Since A + P =

[
a1 + p1 a2 + p2

0 a3 + p3

]
∈ J(T2(R)), a1 + p1 ∈ J(R) and

a3 + p3 ∈ J(R). Besides assume that B ∈ comm(A) and take B =[
b1 b2
0 b3

]
, so[

b1a1 b1a2 + b2a3
0 b3a3

]
=

[
a1b1 a1b2 + a2b3

0 a3b3

]
. Therefore a2(b1 − b3) =

b2(a1 − a3).
(i) If a1, a3 ∈ J(R), then p1 = p3 = 0. Hence p2 = 0.
(ii) If a1, a3 ∈ U(R), then p1 = p3 = 1. Hence p2 = 0.
(iii) If a1 ∈ J(R), a3 ∈ U(R), then p1 = 0, p3 = 1 and p2 = x ∈ R.
Since a1 − a3 ∈ U(R), b2 = (a1 − a3)

−1a2(b1 − b3). Providing x =
(a3 − a1)−1a2, then P ∈ comm(B). Hence P ∈ comm2(A).
(iv) If a1 ∈ U(R), a3 ∈ J(R), then p1 = 1, p3 = 0 and p2 = x ∈ R.
Because of a1 − a3 ∈ U(R), b2 = (a1 − a3)

−1a2(b1 − b3). Providing
x = (a1 − a3)−1a2, then P ∈ comm(B). Therefore P ∈ comm2(A).
Case 2: Let A−P ∈ J(T2(R)) such that P 2 = P ∈ comm2(A). Proof
is similar to proof of Case 1.

The converse statement is clear. �
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The following result is a direct consequence of Proposition 3.2 for
J-quasipolar rings.

Corollary 3.3. Let R be a commutative local ring. A=

[
a1 a2
0 a3

]
is

J-quasipolar in T2(R) if and only if one of the following holds:

(1) A ∈ J(T2(R)).
(2) A ∈ −1 + J(T2(R)).

(3) A + P ∈ J(T2(R)) where P =

[
1 x
0 0

]
such that x = (a1 −

a3)
−1a2 or x = (a3 − a1)−1a2.

Corollary 3.4. Let R be a ring. If Tn(R) with n ≥ 2 is weakly J-
quasipolar, then R is weakly J-quasipolar.

Proof. Assume that Tn(R) is weakly J-quasipolar. Let f be the unit
matrix with (1, 1) entry is 1 and the other entries are 0, then fTn(R)f ∼=
R. By Theorem 2.7, R is weakly J-quasipolar. �

The following example illustrates that the converse statement of
Corollary 3.4 is not true in general.

Example 3.5. IfR = Z3, thenR is weakly J-quasipolar. ForA=

[
1 0
0 2

]
∈ U(T2(R)), A+I2 /∈ J(T2(R)) and A−I2 /∈ J(T2(R)). Therefore T2(R)
is not weakly J-quasipolar.

Our next endeavor is to find conditions under which an individual
matrix in M2(R) is weakly J-quasipolar.

Lemma 3.6. Let R be a ring. Then A ∈ U(M2(R)) and A is weakly
J-quasipolar if and only if A− I2 ∈ J(M2(R)) or A+ I2 ∈ J(M2(R)).

Proof. Let A be weakly J-quasipolar. Since A ∈ U(M2(R)), weakly
J-spectral idempotent of A is I2. Hence A + I2 ∈ J(M2(R)) or A −
I2 ∈ J(M2(R)). Conversely, if A − I2 ∈ J(M2(R)), then A ∈ I2 +
J(M2(R)) ⊆ U(M2(R)). If A + I2 ∈ J(M2(R)), then it is clear from
the proof of [6, Lemma 4.3] that A ∈ U(M2(R)). �

The following lemma is important to study especially in a matrix
ring.

Lemma 3.7. If R is a weakly J-quasipolar ring, then 6 ∈ J(R).

Proof. Let R be a weakly J-quasipolar ring, then there exists p2 =
p ∈ comm2(2) such that 2 − p ∈ J(R) or 2 + p ∈ J(R). Assume that
2 − p = j ∈ J(R), therefore 2 − j = p and (2 − j)2 = 2 − j. Thus
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2 = j(3− j) ∈ J(R). As a consequence 6 ∈ J(R). If 2+p = j1 ∈ J(R),
then (j1 − 2)2 = (j1 − 2). So 6 = j1(5− j1) ∈ J(R). �

Lemma 3.7 is helpful to show a ring is not weakly J-quasipolar.

Example 3.8. Since 6 /∈ J(Z15) = 0, by Lemma 3.7, Z15 is not weakly
J-quasipolar.

The converse statement of Lemma 3.7 is not true in general, i.e., for
a ring R, if 6 ∈ J(R), then R need not be weakly J-quasipolar.

Example 3.9. It is obvious that 6 ∈ J(T2(Z3)). By Example 3.5, the
ring T2(Z3) is not weakly J-quasipolar.

Proposition 2.8 shows that in case of 2 ∈ J(R), weakly J-quasipolar
rings and J-quasipolar rings are the same. The following example
indicates that it does not hold in case of 6 ∈ J(R).

Example 3.10. The ring Z9 is weakly J-quasipolar and 6 ∈ J(Z9).
Since there is not a J-spectral idempotent for 4 such that 4+p ∈ J(Z9),
it is not J-quasipolar.

Lemma 3.11. Let R be a ring with 6 ∈ J(R). If a ∈ R is weakly
J-quasipolar, then a+ 5 or a− 5 is weakly J-quasipolar.

Proof. Let a ∈ R be weakly J-quasipolar. Thus a + p ∈ J(R) or
a− p ∈ J(R) such that p2 = p ∈ comm2(a). Assume that a+ p ∈ J(R)
and p2 = p ∈ comm2(a). Since 6 ∈ J(R), a−6+p = (a−5)− (1−p) ∈
J(R). So a − 5 is weakly J-quasipolar. If a − p ∈ J(R) such that
p2 = p ∈ comm2(a), a+ 6− p = (a+ 5) + (1− p) ∈ J(R). �

Proposition 3.12. Let R be a commutative ring with 6 ∈ J(R) and
A ∈ M2(R) such that A /∈ J(M2(R)). If both detA and trA are in
J(R), then A is not weakly J-quasipolar.

Proof. If A is weakly J-quasipolar, then A − 5 or A + 5 weakly J-
quasipolar by Lemma 3.11. Note that det(A − 5) = detA − 5(trA +
5) ∈ U(R). Hence weakly J-spectral idempotent of A − 5 is I2 by
Lemma 2.3. So A − 5 − I2 ∈ J(M2(R)) or A − 5 + I2 ∈ J(M2(R)). If
A−5−I2 ∈ J(M2(R)), thenA is weakly J-quasipolar, which contradicts
the assumption. In other condition, let A− 5 + I2 ∈ J(M2(R)) and so
A− 4 ∈ J(M2(R)). Therefore a11 − 4, a22 − 4 ∈ J(R), a11 + a22 − 8 =
trA− 8 ∈ J(R). Since trA ∈ J(R), so 8 ∈ J(R) and 8− 6 = 2 ∈ J(R).
Thus A− 4 + 4 ∈ J(M2(R)) is a contradiction. As a consequence A is
not weakly J-quasipolar. Also in case of A + 5 ∈ J(M2(R)), proof is
similar. Finally A is not weakly J-quasipolar. �
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Lemma 3.13. Let R be a commutative local ring. Then A =

[
j 0
0 u

]
is weakly J-quasipolar in M2(R) if and only if one of the following
holds.

(1) A ∈ J(M2(R)).
(2) A+ I2 ∈ J(M2(R)).
(3) A− I2 ∈ J(M2(R)).
(4) u ∈ −1 + J(R) and j ∈ J(R).
(5) u ∈ J(R) and j ∈ −1 + J(R).
(6) u ∈ J(R) and j ∈ 1 + J(R).
(7) u ∈ 1 + J(R) and j ∈ J(R).

Proof. Let A be weakly J-quasipolar. Then, there exists P 2 = P ∈
comm2(A) such that A+P ∈ J(M2(R)) or A−P ∈ J(M2(R)). If A+
P ∈ J(M2(R)), then (1), (2), (4), (5) hold by [6, Lemma 4.7]. Assume
that A − P ∈ J(M2(R)). If P = 0 or P = I2 it is clear. Let P 6= 0

and P 6= I2. By Proposition 3.1, P =

[
a b
c 1− a

]
where bc = a − a2.

Since F =

[
1 0
0 0

]
∈ comm(A) and P ∈ comm2(A), FP = PF . Then,

b = c = 0. Thus, P =

[
1 0
0 0

]
or P =

[
0 0
0 1

]
. Since A−P ∈ J(M2(R)),

u ∈ J(R) and j ∈ 1 + J(R) or u ∈ 1 + J(R) and j ∈ J(R).
Conversely, if A ∈ J(M2(R)) or A + I2 ∈ J(M2(R)) or A − I2 ∈
J(M2(R)), then A is weakly J-quasipolar. If u ∈ −1 + J(R) and
j ∈ J(R) or u ∈ J(R) and j ∈ −1 + J(R), then it follows from
[6, Lemma 4.7]. Suppose that u ∈ J(R) and j ∈ 1 + J(R). Let

P =

[
1 0
0 0

]
. Then P 2 = P and A − P ∈ J(M2(R)). To show that

P 2 = P ∈ comm2(A), let B =

[
x y
z t

]
∈ comm(A). Hence y = z = 0

and so PB = BP . Thus A is weakly J-quasipolar. If u ∈ J(R) and
j ∈ 1 + J(R), similarly A is weakly J-quasipolar. �

Proposition 3.14. Let R be a commutative local ring with 6 ∈ J(R)
and let A ∈ M2(R) such that A /∈ J(M2(R)) and detA ∈ J(R). Then
A is weakly J-quasipolar if and only if x2 − (trA)x + detA = 0 has a
root in J(R) and a root in ∓1 + J(R).

Proof. Let A be weakly J-quasipolar, A /∈ J(M2(R)) and detA ∈ J(R).
Then there exists P 2 = P ∈ comm2(A) such that A − P ∈ J(M2(R))
or A + P ∈ J(M2(R)). Let A − P ∈ J(M2(R)). So trA ∈ U(R), by
Proposition 3.12. If x2 − (trA)x = −detA, then x(x(trA)−1 − 1) =
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−detA(trA)−1. As R is commutative local, J(R) is a prime ideal in
R. Hence x ∈ J(R) or x(trA)−1 − 1 ∈ J(R). We discuss the following
cases.
Case 1: If x ∈ J(R), then x(trA)−1 − 1 ∈ −1 + J(R).
Case 2: If x(trA)−1 − 1 ∈ J(R), then x ∈ 1 + J(R).
In case of A+P ∈ J(M2(R)), the proof is similar. Conversely, let A =[
a b
c d

]
. Assume that γ1 and γ2 are roots of characteristic equation of A

such that γ1 ∈ J(R) and γ2 ∈ ∓1+J(R). It is clear that trA = γ1+γ2 ∈
U(R). Without loss of generality, we may assume that a ∈ U(R). Let

W =

[
b a− γ1

γ1 − a c

]
∈M2(R). Then detW = bc− (a− γ1)(γ1− a) ∈

U(R) and W ∈ U(M2(R)). So W−1AW =

[
γ1 0
0 γ2

]
. By Lemma 3.13,

W−1AW is weakly J-quasipolar. Therefore A is weakly J-quasipolar
by Lemma 2.5. �

Theorem 3.15. Let R be a commutative local ring with 6 ∈ J(R).
The matrix A ∈M2(R) is weakly J-quasipolar if and only if one of the
following holds:

(1) Either A or A− I2 or A+ I2 is in J(M2(R)).
(2) The equation x2 − (trA)x+ detA = 0 has a root in J(R) and a

root in ∓1 + J(R).

Proof. For the sufficiency, in the case (1) clearlyA is weakly J-quasipolar.
Suppose that (2) holds. Then A /∈ J(M2(R)) and detA ∈ J(R), so A
is weakly J-quasipolar, by Proposition 3.14.
For the necessity, suppose that A, A− I2 and A+ I2 are not contained
in J(M2(R)). Hence detA ∈ J(R) by Lemma 3.6. Therefore (2) is
guaranteed by Proposition 3.14. �

Lemma 3.16. [4, Lemma 1.5] Let R be a commutative domain. Then
A ∈ M2(R) is an idempotent if and only if either A = 0 or A = I2 or

A =

[
a b
c 1− a

]
where bc = a− a2.

Proposition 3.17. A ∈ M2(Z) is weakly J-quasipolar if and only if
one of the following hold.

(1) A=

[
−a b
c a− 1

]
such that bc = a− a2.

(2) A is idempotent.

(3) A=

[
−a −b
−c a− 1

]
such that bc = a− a2.
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Proof. Assume that A is weakly J-quasipolar. Since J(M2(Z)) = 0,

proof is clear. Conversely, If A=

[
a b
c 1− a

]
and bc = a− a2, then A

is idempotent. So A is weakly J-quasipolar. Let A=

[
−a b
c a− 1

]
. If

idempotent is chosen as P=

[
a −b
−c 1− a

]
, then it is clear. Lately, let

A=

[
−a −b
−c a− 1

]
. The idempotent is chosen as P=

[
a b
c 1− a

]
, it is

clear. �
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