| تعداد نشریات | 32 |
| تعداد شمارهها | 814 |
| تعداد مقالات | 7,878 |
| تعداد مشاهده مقاله | 36,681,213 |
| تعداد دریافت فایل اصل مقاله | 8,302,971 |
Spline Collocation for system of Fredholm and Volterra integro-differential equations | ||
| Journal of Mathematical Modeling | ||
| مقاله 6، دوره 3، شماره 2، خرداد 2016، صفحه 189-218 اصل مقاله (325.02 K) | ||
| نوع مقاله: Research Article | ||
| نویسندگان | ||
| Nehzat Ebrahimi* ؛ Jalil Rashidinia | ||
| Department of Mathematics, Islamic Azad University, Central Tehran Branch, Iran | ||
| چکیده | ||
| The spline collocation method is employed to solve a system of linear and nonlinear Fredholm and Volterra integro-differential equations. The solutions are collocated by cubic B-spline and the integrand is approximated by the Newton-Cotes formula. We obtain the unique solution for linear and nonlinear system $(nN+3n)\times(nN+3n)$ of integro-differential equations. This approximation reduces the system of integro-differential equations to an explicit system of algebraic equations. At the end, some examples are presented to illustrate the ability and simplicity of the method. | ||
| کلیدواژهها | ||
| System of Fredholm and Volterra integro-differential equations؛ Cubic B-spline؛ Newton-Cotes formula؛ convergence Analysis | ||
|
آمار تعداد مشاهده مقاله: 2,015 تعداد دریافت فایل اصل مقاله: 2,147 |
||