Online version is available on http://research.guilan.ac.ir/csm 
 
CSM   
Chemistry of Solid Materials 
Vol. 2 No. 1 2014 
  
  
[Research] 
 
 
 
Synthesis and characterization of amine functionalized mesoporous 
magnetite nanoparticles having environmental applications 
 
M. Khabazipour
1
, Sh. Shariati*2
  
1
MSc
 
Student, Department of Chemistry, Islamic Azad University, Rasht Branch, Rasht, 
Iran. 
2
Associate Professor, Department of Chemistry, Islamic Azad University, Rasht Branch, 
Rasht, Iran. 
 
* Corresponding author’s E-mail: Shariaty@iaurasht.ac.ir 
 
Article history: 
(Received: 10 Jun 2014, Revised: 9 Aug 2014, Accepted: 16 Aug 2014) 
ABSTRACT 
In  this  study,  amino  functional  groups  were  chemically  bonded  to  the  surface  of  newly 
synthesized  KIT-6  mesoporous  magnetite  nanoparticles  (MMNPs)  by  post-toluene  reflux 
synthesis method.  This method  treats  calcined mesoporous  nanoparticles with  the  functional 
organosilanes.  Physical  and  chemical  structures  of  the  synthesized  mesoporous  magnetite 
nanoparticles  were  characterized  by  scanning  electron  microscopy  (SEM),  powder  X-ray 
diffraction  (XRD),  Fourier  transform  infrared  spectroscopy  (FT-IR)  and  nitrogen  adsorption-
desorption  isotherms.  Finally,  the  ability  of  the  newly  synthesized  aminated  mesoporous 
magnetite nanoparticles as a novel and recoverable sorbent with environmental applications was 
examined by studying the removal of dichromate ions from aqueous samples. 
 
Keywords: KIT-6, Mesoporous magnetite nanoparticles, Amine functionalized 
 
1. INTRODUCTION 
Various methods  for water  refinement 
have  been  developed  and  used. 
Adsorption  is  one  of  these  methods, 
which is a fast, inexpensive and widely 
applicable  technique  [1].  Mesoporous 
materials  are  very  attractive  for 
separation  and  adsorption  processes 
due  to  their  high  specific  surface  area, 
large  pore  volume,  regular  structure, 
uniform  pore  size  distribution  and 
relatively  high  thermal  stability  [2]. 
Mesoporous  silica  materials  like 
MCM-n, SBA-n and Kit are fairly new 
types of material  that have pores  in  the 
mesoscopic  range  of 2–50  nm.  The 
synthesis  of  magnetite  nanoparticles 
coated with mesoporous  silica  leads  to 
an improvement in the surface area and 
in  the  textural  properties  of  the 
magnetite  nanoparticles which  in  turn, 
provides  more  stable  supports  for 
various  organic  and  inorganic  species. 
Many  efforts  have  been  made  to 
prepare  metal-fill  in  mesoporous 
through  post-synthesis  grafting 
procedures  or  direct  synthesis  [3]. 
However,  it  is  very  difficult  to 
introduce  the  metal  ions  into 
mesoporous  directly  due  to  the  facile 
dissociation of metal-O-Si bonds under 
strong  acidic  hydrothermal  conditions 
[4-7].  Most  of  the  works  have  been 
focused  on  the  post-synthesis method. 
But  the  post-synthesis  method  always 
forms metal  oxides  in  the  channels  or M. Khabazipour, Sh. Shariati /CSM Vol.2 No.1, 2014 pp.11-19 
12  
external  surface  of  the  support, which 
would block the channels and not allow 
the  reactants  to  access  all  the  reaction 
sites in the porous matrix [8-10].  
Here, we  report a  simple and effective 
procedure for successful preparation of 
mesoprous  KIT-6  magnetite  nano-
particles with high surface area. For the 
surface  modification  of  KIT-6  coated 
magnetite  with  an  NH2  linker, 
aminopropyltriethoxysilane  (APTES) 
was  used  as  the  surface  modification 
agent.  Surface  modification  or 
functionalization  of  mesoporous 
materials  is  a  great  technique  for 
removal of some organic and inorganic 
contaminants  [11].  In  this  context, 
aliphatic  hydrocarbons  [12],  phenyl 
[13],  amine  [14],  thiol  and  sulfonic 
functionalities  have  been  mainly 
studied  as  surface  modifiers.  Among 
these  useful  functional  groups,  amine 
groups  represent  great  potential  for 
metal  ion  extraction  [15],  molecular 
gates [16], sensors, adsorption [17] and 
catalysts  [18].  In  the  present  research, 
the  synthesis  of  new  mesoporous 
magnetite  nanoparticles  with  a  high 
density  of  amino  groups  is  studied. 
This  strategy  involves  Fe3O4 
nanoparticle  as  the  magnetic  core 
coated  by  SiO2  and  after  that  KIT-6 
mesoporous  silica  as  a  thin  layer  to 
form  a  core/shell  structure  that  is 
functionalized  by  amine  via  post 
synthesis  method.  In  this  method, 
organic  functional  groups  are 
covalently  attached  to  the  silanol 
groups  (Si–OH) of  the pore  surface by 
the  reaction  of  the  organosilane  under 
reflux  condition  in  toluene  solvent. To 
the  best  of  our  knowledge,  this  is  the 
first  report  on  the  synthesis  and 
application  of  this  newly  synthesized 
MMNPs. 
 
2. EXPERIMENTAL 
2.1. Material 
Ferric  chloride  hexahydrate  (FeCl3-
6H2O),  ferrous  chloride  tetrahydrate 
(FeCl2.4H2O),  sodium  hydroxide, 
tetraethylorthosilicat  (TEOS),  3-
aminopropyltriethoxysilane  (H2N-
CH2CH2CH2Si(OC2H5)3,  APTES)  as 
organosilane, potassium dichromate, n-
butanol,  p-toluenesulfonic  acid, 
absolute  ethanol  and hydrochloric  acid 
(37 wt %) were  purchased with  high 
purity  from  Merck  (Darmstadt, 
Germany). Pluronic P123 (EO20–PO70–
EO20,  MW=5800)  as  a  non-ionic 
surfactant  was  prepared  from  Aldrich 
(Milwaukee, WI, USA). All  stock  and 
working  solutions were prepared using 
doubly distilled water.  
 
2.2. Instrumentation 
The  crystal  phases  and  crystallinity  of 
synthesized MMNPs were analyzed on 
X-PRTPRO  (PANalitical, Netherlands) 
X-ray  diffraction  (XRD)  instrument 
using  Cu Kα  radiation  source  with 2θ 
range  of  0.5-70o
.  To  investigate  the 
chemical  structure  of  synthesized 
MMNPs,  Shimadzu  Fourier  transform 
infrared  spectrophotometer  (FT-IR-
470,  Japan)  in  the wave number  range 
of  400-4000  cm-1
  was  used.  Nitrogen 
adsorption-desorption  experiments  for 
determination of  surface area  and pore 
size  of  the  nanoparticles  were  carried 
out at 77 K  (Bel,  Japan). The  size and 
morphology  of  the  modified 
nanoparticles  were  observed  under  a 
Philips  XL  30  scanning  electron 
microscope  (SEM,  Netherlands).  For 
absorption  measurements  a  Shimadzu 
UV-Vis  spectrophotometer  (3100  pc 
series, Japan) was used. pH of solutions 
were  measured  by  using  a  Crison  pH 
meter  (Basic  20,  Spanish).  For 
magnetic  separation  a  strong  super 
magnet with 1.4 T magnetic field (1 × 3 
× 5 cm) were applied. 
 
2.3.  Synthesis  of  silica  coated  magnetite 
nanoparticles (Fe3O4@SiO2 MNPs)  
Fe3O4  MNPs  were  chemically 
synthesized  with  addition  of  an 
aquoues  solution  of  ferous  and  ferric M. Khabazipour, Sh. Shariati /CSM Vol.2 No.1, 2014 pp.11-19 
 13 
 
ions  (in  a  1:2 molar  ratio)  to  amonia 
solution with  little modification  in  the 
methodology  already  described  in  the 
literature  [19].  Briefly,  10.4  g  of 
FeCl3.6H2O, 4.0 g of FeCl2.4H2O and 
1.7  ml  of  HCl  (12  mol L-1
)  were 
dissolved  in 50 ml of deionized water 
in  order  to  prepare  stock  solution  of 
ferrous  and  ferric  chloride.  This 
solution  was  degassed  with  purging 
nitrogen  gas  (99%)  for  20  min. 
Simultaneously, 250 ml of 1.5 mol L-1
 
ammonia  solution  was  degassed  (for 
15  min)  and  heated  to  80 o
C  in  a 
reactor.  Then,  the  stock  solution  was 
slowly added  to  the ammonia solution 
using a dropping funnel during 60 min 
under  nitrogen  gas  atmosphere  and 
vigorous  stirring  (1000  rpm)  by 
magnetic  stirrer.  During  the  whole 
process,  the  solution  temperature was 
maintained  at  80 o
C  and  nitrogen  gas 
was  purged  to  remove  the  dissolved 
oxygen.  After  completion  of  the 
reaction,  the  obtained  Fe3O4  MNPs 
were  separated  from  the  reaction 
medium by  a magnet  (1.4 Tesla),  and 
then  washed  with  500  ml  doubly 
distilled water  four  times. Finally,  the 
obtained  Fe3O4 MNPs were  dried  for 
120 min at 90 o
C. Due to instability of 
Fe3O4  MNPs  under  acidic  condition 
for  KIT-6  mesoporous  synthesis,  a 
silica layer was coted on the surface of 
synthesized particles. For  synthesis of 
Fe3O4@SiO2  MNPs,  1.0  g  of  the 
synthesized  MNPs  were  homo-
geneously  dispersed  in  500  ml  of 
ethanol  containing  ammonia  (25  ml, 
25  wt  %),  under  stirring  at  80o
C 
followed  by  dropwise  addition  of 
ethanolic  solution  of  TEOS  (10.8 
%v/v). After  stirring  at 80 o
C  for 2 h, 
the  Fe3O4@SiO2  nanoparticles  were 
obtained  and  washed  several  times 
with  a mixture of water-ethanol  (1:1). 
Then,  the  synthesized  nanopartices 
dried at 100°C for 5 h.  
 
2.4.  Synthesis  of  KIT-6  mesoporous 
magnetite  nanoparticles  (Fe3O4@ 
SiO2@KIT-6 MMNPs) 
The  KIT-6  mesoporous  silica  with 
cubic  Ia3d  symmetry  as  shell  on  the 
magnetite  core  was  synthesized 
according  to  the  method  described  in 
the  literature  [20]. Typically, 1.25 g of 
Pluronic  P123 was  dissolved  in  45 ml 
of  distilled  water.  Then,  1  g  of 
Fe3O4@SiO2  and  2.4  ml  of  HCl 
solution  (37 wt %) were  added  to  the 
solution  under  vigorous  stirring. After 
complete  mixing,  1.3  g  of  n-butanol 
(99.4  wt  %)  was  added.  Following 
further  stirring  for 1 h, 2.7 g of TEOS 
(as  silica  source)  was  added 
immediately. Subsequently, the mixture 
was  left  stirring  at  35°C  for  24  h  and 
transferred  into  an  autoclave,  which 
was sealed and maintained at 100°C for 
another  24  h  under  static  conditions. 
The resulting solid product was filtered 
and  dried  at  100°C  overnight.  After 
that,  the filtrate was stirred for 1 h  in a 
mixture of 300 ml EtOH containing 20 
ml  concentrated HCl  (37 wt %). After 
ethanol/HCl  washing,  the  final 
nanoparticles were  filtered, dried at 90 
°C and finally calcined at 550 °C for 6 
h in air. 
2.5.  Synthesis  of  amine  functionalized 
KIT-6  mesoporous  magnetite  nano-
particles  (Fe3O4@SiO2@KIT-6-NH2  MM 
NPs) 
Synthesis  of  amine  functionalized 
MMNPs  was  carried  out  by  the  post-
synthesis grafting method [21]. A post-
synthesis  grafting method  is  based  on 
the  silylation  of  surface  silanol  groups 
with  organoalkoxysilanes.  A  detailed 
experimental  description  for  synthesis 
of  Fe3O4@SiO2@KIT-6-NH2  MMNPs 
is as follows: 0.5 g of synthesized KIT-
6 mesoporous magnetite was dispersed 
in 75 ml of toluene by stirring for 0.5 h 
at  50  °C.  After  that,  3.5  mg  of  p-
toluenesulfonic  acid  and  1.0  mmol  of M. Khabazipour, Sh. Shariati /CSM Vol.2 No.1, 2014 pp.11-19 
14  
organosilane  (APTES)  were  added  to 
the mixture. The mixture was heated up 
to  120  °C  and  stirred  for  4  h.  After 
refluxing for 4 h, the solid product was 
filtered  and  washed  with  absolute 
ethanol  several  times  and was  dried  at 
100  °C  for  12  h  [21].  Figure  1  (a-d) 
shows  the  colour  of  synthesized 
nanoparticles during different steps. 
 
 
 
Fig.1. Samples synthesized: (a) Fe3O4 (b) Fe3O4@SiO2 (c) Fe3O4@SiO2@KIT-6 (d) 
Fe3O4@SiO2@KIT-6-NH2 
 
 
 
 
 
3. RESULTS AND DISCUSSION 
3.1.  Characterization  of  the  synthesized 
MMNPs 
IR  spectra  of  Fe3O4@SiO2@KIT-6-
NH2 MMNPs is shown in Figure 2. The 
bands  at  ~557  and  439  cm-1
  are 
attributed  to  the  Fe-O  vibration  of 
Fe3O4  in  tetrahedral  and  octahedral 
sites,  respectively.  Also,  the  peak  at 
~1049 cm-1
  is attributed  to asymmetric 
stretching  vibrations  of  Si-O-Si  and 
stretching  vibration  of  the  N-H 
functionalities  was  observed  at  3429 
cm-1
. 
 
 
 
 
 
 
Fig. 2. FT-IR spectra of Fe3O4@SiO2@KIT-6-NH2 MMNPs 
 M. Khabazipour, Sh. Shariati /CSM Vol.2 No.1, 2014 pp.11-19 
 15 
 
 
Figure 3 shows the XRD patterns of KIT-
6  (A)  and  Fe3O4@SiO2@KIT-6-NH2  in 
low(B) and wide (C) angels. Three peaks 
with 2θ at 1, 1.6 and 1.83, indicating well 
resolved  (211),  (220)  and  (332)  peaks 
which  are  typical  for  cubic  order 
materials  with  la3d  space  group.  Other 
peaks  with 2θ  at  26.05,  30.315,  35.66, 
43.35, 53.8, 57.3, 62.96 and 71.51 
 
 
 
correspond to Fe3O4. As shown in Figure, 
the  intensities  of XRD  patterns  decrease 
and d  spacing was  shifted  to  small angle 
with the increase of mesopores coating on 
the iron oxide core. It seems that absence 
of  the  prominent  peaks  revealed  the 
mesostructure  would  collapse  with  iron 
oxid  core,  compared  to  that  of  the 
mesoporous KIT-6. 
 
 
 
 
 
Fig. 3. (A) X-ray diffraction pattern of KIT-6, (B) Fe3O4@SiO2@KIT-6-NH2 in small angle 
and  (C) Fe3O4@KIT-6-NH2 in wide angle. 
 
 
Nitrogen  adsorption–desorption  iso-
therm  of  the  MMNPs  show  a 
characteristic  type  IV  curve  (Figure 
4A)  with  a  distinct  hysteresis  loop  in 
the p/p0 range of 0.6–0.9, indicating the 
presence  of  a  narrow  distribution  of 
mesoporous  pore  size.  The  type  IV 
isotherm  (IUPAC  classification)  is 
typical  for  mesoporous  systems.  The 
typical BJH  (Barrett–  Joyner–Halenda) 
pore  size  distributions  (Figure  4B) 
indicates narrow pore size distributions 
for  samples.   A  comparison  between 
the  BET  and  XRD  results  of  the 
synthesized sorbent with other reported 
mesoporous samples are summarized in 
Table  1.    The  results  clearly  indicate 
that  the core/shell structure of MMNPs 
has  high  surface  areas,  large  and 
uniform  pores.  Therefore,  it  could  be 
deduced  that  the  pores  of  the  silica 
mesoporous  shell  were  remained  after 
loading  on  the  surface  of  iron  oxide 
nanoparticles. M. Khabazipour, Sh. Shariati /CSM Vol.2 No.1, 2014 pp.11-19 
16  
 
 
Fig.  4.  (A)  Nitrogen  adsorption-desorption  isotherms  measured  at  77K;  (B)  pore  size 
distribution curves (inset) of core–shell structured synthesized and BET (C) of Fe3O4@SiO2@ 
KIT-6. 
 
   
Table 1: A comparison between the BET and XRD results of the synthesized nanoparticles 
with other reported mesoporous samples. 
  Fe3O4@SiO2@
KIT-6 
KIT-6- α-Fe2O3 
[22] 
SPIO@mSiO2 
[23] 
ASP–Fe3O4@MCFS        
[24] 
SBET [m2
g-1
]   241.68 
 
148 
 
 
46 
 
 
140 
 
 
ap[m2
g-1
]  224.84  - 
 
-  - 
Vtotal[cm2
g-1
] 
 
0.583 
 
-  -  -  
Vp[cm2
g-1
] 
 
0.566 
 
0.47 
 
0.0813 
 
0.36   
 
d0(BJH)[nm] 
 
9.25  2.7  7.03  10.3   
W (nm) 
 
2.84  -  -  - 
d100/d211  99.20  -  -  - 
BET surface area calculated in the range of relative pressure (p/p0) = 0 - 0.5 
do = mean pore dimeter (BJH) 
Vtot = total pore volumes measured at (p/p0) =0.98 
Vp= mean volume of the pores 
ap= surface of pores 
d = d-spacing 
a = unitcell parameter 
w = wall thickness 
 
 
 M. Khabazipour, Sh. Shariati /CSM Vol.2 No.1, 2014 pp.11-19 
 17 
 
Figure 5  shows  the SEM  image of  the 
synthesized  Fe3O4@SiO2@KIT-6 
nanoparticles.  As  seen  in  image,  the 
morphologies  are  very  uniform  and 
spherical  nanoparticles  with  diameters 
about 17 nm were synthesized. 
 
 
 
Fig. 5. SEM micrograph of Fe3O4@SiO2@KIT-6 MMNPs  
 
3.2. Application of synthesized amine 
functionalized MMNPs  
The  newly  synthesized  amine 
functionalized  MMNPs  were  good 
sorbents  for  removal  of  the  anionic 
species  from  aqueous  solutions.  At 
acidic pHs, amino groups have positive 
charges  and  can  be  linked  to  anionic 
species  via  electrostatic  interaction. 
The ability of the aminated mesoporous 
magnetite  was  examined  for  the 
removal  of  Cr(VI)  in  hydro-
genchromate  (HCrO4
-
)  form  as  model 
anionic  compound  from  aqueous 
solutions.  A  solution  of  150  mg L-1
 
Cr(VI)  was  prepared  by  dissolving  a 
known  quantity  of  potassium 
dichromate  (K2Cr2O7)  in  double-
distilled water. The equilibrium studies 
were  systematically  carried  out  in  a 
batch process, covering various process 
parameters. Different species of Cr(VI) 
(Cr2O7
2−
,  HCrO4
−
,  Cr3O10
2−,
  Cr4O13
2−
) 
coexist  at  acidic  pH  condition. At  pH 
2–3  the  predominant Cr(VI)  species  is 
HCrO4
−
,  which  is  favorable  adsorbed 
since  it  has  a  low  adsorption  free 
energy.  
2CrO4
2- 
+ 2H+
  ⇌ 2HCrO4
−  
⇌ 
 
H2O 
+ Cr2O7
2-
 
 
The  maximum  Cr(VI)  adsorption 
capacity,  calculated  via  absorption 
spectrophotometry  measurements,  was 
obtained  as  185.18  mg g-1
  at  the 
optimal conditions (Sample volume: 75 
ml,  pH=2,  contact  time:  15  min, 
MMNPs  dose:  1  g L-1
).  Cr(VI)  ions 
were  desorbed  with  alkali  solutions. 
The obtained magnetite was  reused  for 
the Cr(VI) adsorption for 4 cycles with 
Cr(VI)  removal  efficiency  higher  than 
90%. A comparison between the newly 
synthesized  MMNPs  with  the  other 
reported sorbents for removal of Cr(VI) 
pollutant  was  summarized  in  Table  2. 
According  to  results,  very  good 
sorption  capacity  was  achieved  in  a 
relatively  shorter  time  that confirm  the 
potential  of  these  nanoparticles  for 
Cr(VI) removal.  
 M. Khabazipour, Sh. Shariati /CSM Vol.2 No.1, 2014 pp.11-19 
18  
 
 
 
Table 2. A comparision between the apllicability of proposed sorbent with other reported 
sorbents in  Cr(VI) removal. 
Adsorbents    pH   
       
 
 
Contact   
Time 
(h)     
Dose of  
Adsorbent 
 (g L-1)  
Adsorption  
Capacity  
(mg g-1)   
References  
                    
NH2 functionalized KIT-6 mesoporous 
magnetite              
2   0.25   1   185.2   This 
Work  
Activated carbon-based iron containing 
adsorbents                           
 
2   48   0.6   68.49   [25]  
Hevea Brasilinesis sawdust activated carbon 
     
2   5   0.1   44.05   [26]  
Modified, cationic surfactant spent mushroom           
      
3.39   1.15  
5  
43.86         
       
[27]  
Chemically activated Neem Sawdust                                   
 
4   3   6   24.63      
         
[28]  
Peanut shell                                                                       
 
4   6   0.4       
       
4.32        
         
[29]  
Oxidized activated carbon from peanut shell                      
      
2   24   0.1          
       
14.54      
   
[30]  
Poly- (methyl acrylate) fuctionalized guar 
gum                        
 
1   24   4   29.67      
          
[31]  
Mesopore of Activated Carbon  
                                                                
3   48              2
     
         53.8
          
[32]  
Immobilized mycelia in carboxy methyl-
cellulose (CMC) of Lentinus sajor-caju   
 
2   2   25   32.2        
          
[33]  
 
 
 
4. CONCLUSION 
In  this  study,  well-ordered  amine 
functionalized  KIT-6  mesoporous 
magnetite  nanoparticles  were  chemi-
cally  synthesized.  The  resultant 
materials showed good crystallographic 
order  and  large  uniform  pore  size. 
Surface  functionalization  of 
synthesized  MMNPs  with  amino 
groups  produces  good  properties  to 
sorbent  for  magnetically  removal  of 
anionic  species  as  well  as  for  solid 
phase  extraction  of  trace  amounts  of 
analytes  and  induces  optimum 
interaction  between  sorbent  and 
adsorbate.  The  proposed  regenarable 
nanoparticles  are  synthesized  easily 
and separated via magnet. Due  to  their 
very  high  surface  areas,  high  sorption 
capacity  can  be  achieved  in  short 
exposure times. These nanoparticles are 
useful  for  the  design  of  an 
economically  treatment  process  for 
removal of anionic pollutants. 
 
Acknowledgement 
Financial support by Rasht Branch, 
Islamic Azad University Grant No. 
4..5830 is gratefully acknowledged. 
 
REFERENCES 
[1]  M.  Anbia,  M.  B.  Ghasemian,  Sh. 
Shariati,  Anal.  Methods.,  4,  4220 
(2012). M. Khabazipour, Sh. Shariati /CSM Vol.2 No.1, 2014 pp.11-19 
 19 
 
[2]    J. S. Beck,  J. C. Vartuli, W.  J. Roth, 
M. E. Leonowicz, C. T. Kresge, K. D. 
Schmitt, C. T. Chu, D. H. Olson,  E. 
W. Sheppard,   S. B. McCullen,  J. B. 
Higgins,  J.  L.  Schlenker,  J.  Am. 
Chem. Soc., 114, 10834 (1992). 
[3] S.W. Chen, C. W. Ma, M. M. Qin, H. 
F.  Yang,  H.  Y.  Xie,  J.  Guan,  React. 
Kinet. Mech. Cat. 106, 245 (2012). 
[4]  A.  Cedeon,  A.  Lassoued,  J.  L. 
Bonardet,  J.  Fraissard, Micro. Meso. 
Mater., 801, 44-45, (2001). 
[5] W. H. Zhang,  J. Lu, B. Han, M. Li,  J. 
Xiu, P. Ying, C. Li, Chem. Mater., 14, 
3413 (2002). 
[6]  B.  L.  Newalkar,  J.  Olanrewaju,  S. 
Komarneni,  Chem.  Mater.,  13,  552 
(2001). 
[7] Wu, S.; Han, Y.; Zou, Y. C.; Song,  J. 
W.; Zhao, L.; Di, Y.; Liu, S. Z.; Xiao, 
F. S. Chem. Mater. 16, 486 (2004). 
[8] M. S. Morey, S. O’Brien, S. Sch Warz, 
G. D. Stucky, Chem. Mater., 12, 898 
(2000). 
[9] M.  J. Cheng, Z. Wang, K. Sakurai, F. 
Kumata,  T.  Saito,  T.  Komatsu,  T. 
Yashima, Chem. Lett., 2, 131(1999). 
[10]  S.  Sumiya, Y. Oumi,  T. Uozumi,  T. 
Sano,  J.  Mater.  Chem.,  11,  1111 
(2001). 
[11] A. Vinu, K.Z. Hossian,  P.  Srinivasu, 
M.  Miyahara,  S.  Anandan,  N. 
Gokulakrishnan,  T.  Mori,  K.  Ariga 
,V.V.  Balasubramanian.,  J.  Mater. 
Chem., 17, 1819 (2007). 
[12]  L.  Mercier,  T.  J.  Pinnavaia,  Chem. 
Mater., 12, 188 (2000). 
[13] M.C. Burleigh, M. A. Markowitz, M. 
S.  Spector,  B.  P.  Gaber,  J.  Phys. 
Chem. 105, 9935 (2001). 
[14] Q. Wei, Z. R. Nie, Y. L. Hao, L. Liu, 
Z. X. Chen, J. X. Zou, J. Sol. Gel. Sci. 
Tech., 39, 103 (2006). 
[15]  J.  Aguado,  J.  M.  Arsuaga,  A. 
Arencibia,  M.  Lindo,  V.  Gascon,  J. 
Hazard. Mater. 163, 213 (2009). 
[16]  R.  Casasús,  M.D.  Marcos,  R. 
Martínez-Máñez,  J.V.  Ros-Lis,  J. 
Soto, L.A. Villaescusa, P. Amorós, D. 
Beltrán, C. Guillem, J. Latorre, J. Am. 
Chem. Soc., 126, 8612 (2004).  
[17]  S.  Saeung, V. Boonamnuayvitaya,  J. 
Environ. Sci., 20, 379 (2008). 
[18] S. L. Hruby, B. H. Shanks, J. Catal., 
263, 181 (2009). 
[19]  N.  Saadatjoo,  M.  Golshekan,  Sh. 
Shariati, H. Kefayati, P. Azizi, J. Mol. 
Catal. A-Chem 377, 173 (2013). 
[20] F. Kleitz, S. H. Choi, R. Ryoo, Chem. 
Commun., 17, 2136 (2003). 
 [21] N. Garcia, E. Benito,  J. Guzman,  P. 
Tiemblo,  V.  Morales,  R.A.  Garcia, 
Micropor. Mesopor. Mater., 106, 129 
(2007). 
 [22] J. K. Shon, S. S. Kong, S. S. Kim, M. 
S.  Kang  ,  J. M. Kim,  Funct. Mater. 
Lett,  1, 151 (2008). 
[23]  J. M. Rosenholm,  J. Zhang, W.  Sun, 
H. Gu, Micro. Meso. Mater., 14, 5 14 
(2011).   
[24] Sh. Huang, Ch. Li, Z. Cheng, Y. Fan, 
P. Yang, C. Zhang, K. Yang, J. Lin, J. 
Colloid  interface  Sci.,  376,  312 
(2012). 
[25] W.  Liu,  J.  Zhang,  C.  Zhang,  L.  Re, 
Chem. Eng. J., 189, 295 (2012). 
[26]  T.  Karthikeyan,  S.  Rajgopal,  L.  R. 
Miranda, J. Hazard. Mater., 124, 192 
(2005). 
[27] X. Jing, Y. Cao, X. Zhang, D. Wang, 
X. Wu,  H.  Xu.,  Desalination,    269, 
120 (2011). 
[28] A.  Saran, H. Kumar,  P.  Shrivastava, 
Middle.  East.  J.  Sci.  Res.,  17,  936 
(2013). 
[29]  M.  Liyas,  A.  Ahmad,  M.  Saeed,  J. 
Chem. Soc. Pak., 35, 760 (2013). 
[30] Z. A. Alothman, R. Ali, M. Naushad, 
J. Chem. Eng., 184, 238 (2012). 
[31]  V.  Singh,  P.  Kumari,  S.  Pandey,  T. 
Narayan,  Bioresour.  Technol.  100, 
1977 (2009). 
[32]  L.  Mao,  F.  Minxia,  Sh.  Tong, 
Environ. Division., 749, 465 (2012). 
[33] M. Y. Arıca, G. Bayramoglu, Colloid. 
Surf. A., 253, 203 (2005).