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Abstract. Unsteady hydromagnetic generalised Couette flow of a viscous,
incompressible and electrically conducting fluid between two horizontal par-
allel porous plates Darcian channel in the presence of a uniform transverse
magnetic field taking Hall current and ion-slip into account in a rotating
system is investigated. An exact solution of the governing equations is ob-
tained by Laplace transform technique. The expression for the shear stress
at the moving porous plate due to primary and secondary flows is also
derived. Asymptotic behavior of the solution is analyzed at the start-up
and final stage of the motion to gain some physical insight into the flow
pattern. Numerical values of primary and secondary velocities and that of
shear stress at the moving porous plate of the channel due to primary and
secondary flows are displayed graphically for various values of different flow
parameters.
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1 Introduction

Investigation of problems of unsteady hydromagnetic Couette flow of a vis-
cous, incompressible and electrically conducting fluid in a rotating system
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permeated by a uniform transverse magnetic field has been an attractive
topic of research during past several decades due to its varied and wide
ranging applications in the areas of astrophysics, geophysics and fluid en-
gineering problems. Magnitude analysis shows that Coriolis force is more
significant than that of viscous and inertial forces in hydromagnetic equa-
tions of motion in a rotating system and is comparable in magnitude to the
magnetic force. Therefore, the study of combined effects of rotation and
magnetic field on hydromagnetic fluid flow problems becomes more relevant.
Taking into account the importance of such study Hide and Roberts [19],
Nanda and Mohanty [27], Debnath [11,12], Seth and Jana [33], Sarojamma
and Krishna [29], Prasad Rao et al. [28], Seth et al. [30–32, 34–36], Chan-
dran et al. [7], Singh et al. [39], Singh [37], Hayat et al. [16–18], Wang and
Hayat [42], Beg et al. [5], Das et al. [10], Guria et al. [14], Makinde et al. [23],
Jha and Apere [20, 22], Guchhait et al. [13], Chauhan and Agrawal [8],
Singh and Pathak [38], Ahmed and Chamkha [2] and Sulochana [41] stud-
ied MHD flow in a rotating medium considering different aspects of the
problem. Study of MHD flow between parallel porous plates is impor-
tant because it may have applications in many biological, agricultural and
engineering problems such as designing of cooling systems with liquid met-
als, nuclear reactor using liquid metal coolant, geothermal energy extrac-
tion, underground energy transport, blood flow problems etc. Keeping in
view the importance of such investigations Mishra and Muduli [26], Prasad
Rao et al. [28], Abbas et al. [1], Hayat et al. [15], Beg et al. [6], Seth et
al. [30–32,35,36], Guchhait et al. [13], Jha and Apere [21] and Ahmed and
Chamkha [2] studied hydromagnetic flow between porous boundaries con-
sidering different aspects of the problem. When an ionized fluid with low
density is permeated by a strong magnetic field, there acts a force, called
Lorentz force. Due to this force fluid particles start spiraling about mag-
netic lines of force instead of moving on a circular path prior to collision
with the other fluid particles. An electric current is induced due to the
spiraling of fluid particles about magnetic lines of force, called Hall cur-
rent and this current is mutually perpendicular to electric and magnetic
fields. Furthermore, for same electromagnetic force, the motion of ions is
different from electrons and so the diffusion velocity of electrons is much
larger than that of ions. Usually, we are considering the electric current
density determined by the diffusion velocity of the electrons. However,
when the magnetic field is very strong the diffusion velocity of ions may
not be negligible (Cramer and Pai [9]). In this condition study of com-
bined effects of Hall current and ion-slip become important. Hall current
and ion-slip play a vital role in determining the flow features of fluid flows.
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Hall current and ion-slip is likely to be important in MHD power genera-
tion, nuclear power reactors, underground energy storage systems, magneto
meters, Hall effect sensors, spacecraft propulsion and several areas of as-
trophysics and geophysics. Soundalgekar et al. [40], Attia [3], Beg et al. [6]
and Jha and Apere [20,22] studied combined effects of Hall current and ion-
slip under different conditions and configurations. Flow through a porous
medium (Bear [4]) is analyzed using Darcy-Forchheimer drag force model
which includes both bulk matrix and porous drag and second order inertial
impedance. Investigation of MHD fluid flow problems through a Darcian
channel is important because of its wide applications in biological, geophys-
ical and technological problems. Chauhan and Agrawal [8] studied effects
of Hall current on steady MHD Couette flow in a rotating channel partially
filled with a porous medium. Transient Couette flow in a rotating non-
Darcian porous medium parallel plate configuration is investigated by Beg
et al. [5]. Beg et al. [6] studied combined effects of Hall current and ion-slip
on unsteady MHD Hartmann-Couette flow within a Darcian channel using
network numerical solutions. Singh and Pathak [38] investigated effects of
rotation and Hall current on mixed convection MHD flow through porous
medium filled in a vertical channel in presence of thermal radiation. Su-
lochana [41] studied effects of Hall current and rotation on unsteady MHD
three dimensional flows through porous medium in the presence of an in-
clined magnetic field. An exact solution of Hartmann Newtonian radiating
MHD flow for a rotating vertical porous channel immersed in a Darcian
porous regime is carried-out by Ahmed and Chamkha [2].

The aim of present investigation is to study the effects of Hall cur-
rent and ion-slip on unsteady hydromagnetic generalized Couette flow in
a rotating Darcian channel. Fluid flow within a channel is induced due to
impulsive movement of the upper plate of the channel as well as by applied
pressure gradient acting along the longitudinal axis of the plates of the
channel and is permeated by a uniform transverse magnetic field which is
fixed relative to the stationary plate. Laplace transform technique is used
to obtain an exact solution of the problem.

2 Mathematical model of the problem and its
solution

Consider the unsteady flow of a viscous, incompressible and electrically
conducting fluid between two parallel porous plates Darcian channel y = −h
and y = h in the presence of a uniform transverse magnetic field B0 applied
parallel to y-axis. The fluid as well as the plates of the Darcian channel
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Figure 1: Geometry of the physical problem.

rotates in unison as rigid body rotation with uniform angular velocity
−→
Ω

about y-axis. Initially (i.e. when time t ≤ 0 ), fluid and plates of the
channel are assumed to be at rest. At time t > 0 , upper plate y = h starts
moving with uniform velocity U0 in x-direction while the lower plate y = −h
is kept fixed. A pressure gradient −∂p′/∂x is applied along the longitudinal
axis of the plates of the channel i.e. along x-axis. Suction/injection takes
place through the porous walls of the channel with uniform transpiration
velocity Vo (V0 > 0 for suction and V0 < 0 for injection). Geometry of the
physical problem is shown in the Fig. 1. It is assumed that no applied or

polarization voltages exist so induced electric field
−→
E = (0, 0, 0). This is

because no energy is being added or extracted from fluid by electrical means
(Meyer [25]). It may be noted that the magnetic Reynolds number is very
small for metallic liquids and partially ionized fluids so induced magnetic
field produced by fluid motion is negligible in comparison to applied one
(Cramer and Pai [9]). Since the plates of the channel are of infinite extent
in x and z-directions, so all the physical quantities except pressure will be

function of y and t only. Therefore, fluid velocity
−→
V and magnetic field

−→
B

are given by
−→
V = (u, V0, w),

−→
B = (0, B0, 0), (1)

where u and w are the fluid velocities in x and z-directions respectively.

Under the above assumptions, the governing equations for hydromag-
netic fluid flow of a viscous, incompressible and electrically conducting fluid
in a rotating Darcian channel taking Hall current and ion-slip in to account,
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are given by

∂u

∂t
+V0

∂u

∂y
+2wΩ = −1

ρ

∂p

∂x
+ν

∂2u

∂y2
−σB

2
0

ρ

[
u(1 +BiBe) + wBe
(1 +BiBe)2 +B2

e

]
− νu
k
, (2)

0 = −1

ρ

∂p

∂y
, (3)

∂w

∂t
+ V0

∂w

∂y
− 2uΩ = ν

∂2w

∂y2
+
σB2

0

ρ

[
uBe − w(1 +BiBe)

(1 +BiBe)2 +B2
e

]
− νw

k
, (4)

where ν, σ, ρ,Be, Bi, p and k are, respectively, kinematic coefficient of vis-
cosity, electrical conductivity of fluid, fluid density, Hall current parameter,
ion-slip parameter, modified pressure including centrifugal force and mag-
netic pressure and permeability of the porous medium.

Eq. (3) shows that modified pressure p is constant along y-axis i.e.
along axis of rotation. The pressure gradient term is absent in Eq. (4)
because there is a net cross flow in z-direction.

The initial and boundary conditions for fluid flows are

u = w = 0 for − h ≤ y ≤ h and t ≤ 0, (5)

u = w = 0 at y = −h for t > 0, (6)

u = U0, w = 0 at y = h for t > 0. (7)

The mathematical model of the present physical problem is governed by
Eqs. (2) and (4) subject to the initial condition (5) and boundary conditions
(6) and (7). We have to find the solution of Eqs. (2) and (4) subject to
the initial condition (5) and boundary conditions (6) and (7). Writing Eqs.
(2) and (4) in compact form, we obtain

∂q

∂t
+V0

∂q

∂y
−2iΩq = −1

ρ

∂p

∂x
+ν

∂2q

∂y2
− σB

2
0

ρ

[
(1 +BiBe)− iBe
(1 +BiBe)2 +B2

e

]
q− νq

k
, (8)

where q = u+ iw.
The initial condition (5) and boundary conditions (6) and (7), in com-

pact form become

q = 0 for − h ≤ y ≤ h and t ≤ 0, (9)

q = 0 at y = −h for t > 0, (10)

q = U0 at y = h for t > 0. (11)



150 J. K. Singh, S. Ghousia Begum and N. Joshi

Introducing dimensionless variables x∗ = x
h , y
∗ = y

h , p∗ = p
ρU0

2 , q∗i = q
U0

=

u∗i + iw∗i and t∗ = tU0
h , Eq. (8) in dimensionless form, becomes{

∂q∗i
∂t∗ +Nt

∂q∗i
∂y∗ − 2iK2q∗i = −R+ 1

Re

∂2q∗i
∂y∗2 −

H2
a

Re

[
(1+BiBe)−iBe

(1+BiBe)2+B2
e

]
q∗i

− q∗i
DaRe

,
(12)

where Nt = V0
U0

is suction/injection parameter (Nt > 0 for suction and
Nt < 0 for injection) which represents the mass of fluid passing into the
Darcian channel via the stationary plate and exiting via the moving plate,
K2 = Ωh

U0
is rotation parameter which represents the relative strength of

Coriolis force to the inertial force, R = dp∗

dx∗ is modified pressure gradient,

Re = U0h
ν is Reynolds number which represents the relative strength of

inertial force to the viscous force, H2
a =

σB2
0h

2

µ is square of Hartmann
number which represents the relative strength of magnetic force to the
viscous force and Da = k

h2
is Darcy number (permeability parameter) which

represents the relative permeability of Darcian channel.

The initial and boundary conditions (9) to (11), in dimensionless form,
are

q∗i = 0 for − 1 ≤ y∗ ≤ 1 and t∗ ≤ 0, (13)

q∗i = 0 at y∗ = −1 for t∗ > 0, (14)

q∗i = 1 at y∗ = 1 for t∗ > 0. (15)

Using Laplace transform, Eq. (12) with the help of initial condition (13),
assumes the form

d2q∗i
dy∗2

−NtRe
dq∗i
dy∗
−
[
sRe +

1

Da
+

H2
a(1 +BiBe)

((1 +BiBe)2 +B2
e )

−i
{

2K2Re +
H2
aBe

((1 +BiBe)2 +B2
e )

}]
q∗i =

RRe
s

,

(16)

where q∗i (y
∗, s) =

∫∞
0 e−stq∗i (y

∗, t∗)dt∗, s > 0 and s being Laplace transform
parameter.

The boundary conditions (14) and (15) after using Laplace transform,
become

q∗i = 0 at y∗ = −1, (17)

q∗i =
1

s
at y∗ = 1. (18)
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Solution of Eq. (16) subject to boundary conditions (17) and (18) is given
by q∗i =

∑∞
n=0

[
1
s

(
e−aλ1 − e−bλ1

)
+ (−1)nR

s(s+m−iM)

(
e−cλ1 + e−dλ1

)]
− R
s(s+m−iM) ,

(19)

where

a = 4n+ 1− y∗, b = 4n+ 3 + y∗, c = 2n+ 1− y∗, d = 2n+ 1 + y∗,

m = 1
DaRe

+ H2
a(1+BiBe)

Re((1+BiBe)2+B2
e)
,

M = 2K2 + H2
aBe

Re((1+BiBe)2+B2
e)
,

λ1 =
(
NtRe

2

)
+
√
Re

√
s+

(
N2

t Re

4

)
+m− iM.

(20)

Taking inverse Laplace transform of Eq. (19), solution for the velocity field
is expressed in the following form (McLachlan [24]).

q∗i (y
∗, t∗) = 1

2

∑∞
n=0

[{
e−aP1erfc

(
a
√
Re

2
√
t∗
− P
√
t∗
)

+e−aP2erfc
(
a
√
Re

2
√
t∗

+ P
√
t∗
)
− e−bP1erfc

(
b
√
Re

2
√
t∗
− P
√
t∗
)

−e−bP2erfc
(
b
√
Re

2
√
t∗

+ P
√
t∗
)}

+ (−1)nR(m+iM)
(m2+M2)

{
e−cP1 × erfc

(
c
√
Re

2
√
t∗
− P
√
t∗
)

+e−cP2erfc
(
c
√
Re

2
√
t∗

+ P
√
t∗
)

+ e−dP1erfc
(
d
√
Re

2
√
t∗
− P
√
t∗
)

+e−dP2erfc
(
d
√
Re

2
√
t∗

+ P
√
t∗
)}

−e(m−iM)t∗
{
e−cNtReerfc

(
c
√
Re

2
√
t∗
− Nt

2

√
Ret∗

)
+e−dNtReerfc

(
d
√
Re

2
√
t∗
− Nt

2

√
Ret∗

)
+ erfc

(
c
√
Re

2
√
t∗

+ Nt
2

√
Ret∗

)
+erfc

(
d
√
Re

2
√
t∗

+ Nt
2

√
Ret∗

)}}]
− R(m+iM)

(m2+M2)

[
1− e−(m−iM)t∗

]
,

(21)

whereX1 =
N2

t Re

4 +m, α, β = 1√
2

[{
(X1)2 +M2

} 1
2 ±X1

] 1
2
,

P = α− iβ, P1 = NtRe
2 + P

√
Re, P2 = NtRe

2 − P
√
Re.

(22)

Eq. (21) represents the general solution for hydromagnetic generalized
Couette flow within a rotating Darcian channel with Hall current and ion-
slip effects.
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3 Shear stress at the moving porous plate

The dimensionless shear stress components τ∗xi and τ∗zi at the moving porous
plate y∗ = 1 due to primary and secondary flows are given by



(τ∗xi + iτ∗zi)|y∗=1 = 1
2

∑∞
n=0

[
P1

{
e−a

′P1erfc
(
a′
√
Re

2
√
t∗
− P
√
t∗
)

−e−b′P1erfc
(
b′
√
Re

2
√
t∗
− P
√
t∗
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+ P2

{
e−a
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√
Re

2
√
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√
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−e−b′P2erfc
(
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√
Re

2
√
t∗

+ P
√
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√

Re
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a′2Re
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2

+P 2t∗
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2
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)
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(m2+M2)
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e−c

′P1erfc
(
c′
√
Re

2
√
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− P
√
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)

+e−d
′P1erfc

(
d′
√
Re

2
√
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− P
√
t∗
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+ P2

{
e−c

′P2erfc
(
c′
√
Re

2
√
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√
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)
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′P2erfc

(
d′
√
Re

2
√
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+ P
√
t∗
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+ 2
√

Re
πt∗
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(

c′2Re
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d′2Re
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d′NtRe
2

+P 2t∗
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−e−(m−iM)t∗
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NtRe
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e−c

′NtReerfc
(
c′
√
Re

2
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t∗
− Nt

√
Ret∗

2

)
+e−d

′NtReerfc
(
d′
√
Re

2
√
t∗
− Nt

√
Ret∗

2

)}
+2
√

Re
πt∗

{
e
−
(

c′2Re
4t∗ +

c′NtRe
2

+
N2
t Ret

∗

4

)
+ e
−
(

d′2Re
4t∗ +

d′NtRe
2

+
N2
t Ret

∗

4

)}}}]
,

(23)

where a′ = 4n, b′ = 4n+ 4, c′ = 2n and d′ = 2n+ 2.

4 Asymptotic solutions

Asymptotic behavior of the solution (21) is analyzed at the start-up stage
(i.e. t∗ << 1) and final stage (i.e. t∗ >> 1) of the motion to gain some
physical insight into the flow pattern.

CASE-1: At the start-up stage of motion (i.e. t∗ � 1)

Primary velocity u∗i and secondary velocity w∗i , which are obtained from
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the general solution (21) for small values of time t∗, are given by

u∗i = −Rt∗ +
∑∞

n=0

[
e−

aNtRe
2

{(
1 + a2ReX1

2

)
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√
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√
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√
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√
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}

+(−1)nR
{
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cNtRe
2

{
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2Re
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eX1
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}
erfc

(
c
√
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√
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)
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dNtRe
2
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2Re
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√
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2
√
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√
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π
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cNtRe
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6
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cNtRe

2

{
2t∗X1

3 +
(

1− d2ReX1
6

)}
e−

d2Re
4t∗
}}]

,

(24)



w∗i = M
∑∞

n=0

[
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aNtRe
2
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−a2Re

2 erfc

(
a
2

√
Re
t∗

)
+ a
√

Ret∗

π e−
a2Re
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}
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bNtRe

2
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(
b
2

√
Re
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)
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√
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π e−
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4t∗
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−(−1)nR
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cNtRe
2

{(
t∗ + c2Re

6

)
c2Re
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(
c
2

√
Re
t∗

)
−
(

2t∗ + c2Re
2

)
c
3

√
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π e−
c2Re
4t∗
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dNtRe
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6
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√
Re
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)
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2t∗ + d2Re
2

)
d
3

√
Ret∗

π e−
d2Re
4t∗
}}]

.

(25)

It is clear from the expressions (24) and (25) that, their arises Rayleigh
boundary layer of thickness O(

√
t∗) in the vicinity of the moving porous

plate y∗ = 1 due to initial impulsive movement of the upper plate, at the
starting stage. It is also noticed from expressions (24) and (25) that the
primary velocity u∗i is independent of rotation whereas secondary velocity
w∗i is independent of permeability. The primary velocity u∗i has significant
effects of Hall current, ion-slip, magnetic field and permeability whereas
the secondary velocity w∗i has significant effects of Hall current, ion-slip,
rotation and magnetic field. However both the primary and secondary ve-
locities are considerably affected by suction/injection. There are no inertial
oscillations in the flow-field up to this stage.

CASE-2: At the final stage of motion (i.e. t∗ � 1)
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In this case the expressions for primary velocity u∗i and secondary velocity
w∗i , which are obtained from the general solution (21), are represented in
the following forms

u∗i (y
∗, t∗) = u∗is(y

∗) + u∗it(y
∗, t∗), (26)

w∗i (y
∗, t∗) = w∗is(y

∗) + w∗it(y
∗, t∗), (27)

where
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∑∞
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NtRe

2
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√
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√
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√
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}
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√
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2
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√
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) (
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√
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√
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2
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√
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√
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2
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u∗it(y
∗, t∗) = u∗it1(y∗, t∗) + u∗it2(y∗, t∗), (30)

u
∗
it1

= e−X1t
∗

2
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}]
,

(34)
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w
∗
it2

= Re−mt∗

(m2+M2)
(m sin(Mt∗) +M cos(Mt∗))

×
[
1−

∑∞
n=0(−1)n(e−cNtRe + e−dNtRe)

]
,

(35)



η1 = a
√

Re
πt∗

e
−(a

2Re
4t∗ +

aNtRe
2 )

ψ1

[(
a2Re
4t∗ −X1t

∗
)

cos(Mt∗) + (Mt∗) sin(Mt∗)
]
,

η2 = b
√

Re
πt∗

e
−( b

2Re
4t∗ +

bNtRe
2 )

ψ2

[(
b2Re
4t∗ −X1t

∗
)

cos(Mt∗) + (Mt∗) sin(Mt∗)
]
,

η3 = c
√

Re
πt∗

e
−( c

2Re
4t∗ +

cNtRe
2 )

ψ3

[(
c2Re
4t∗ −X1t

∗
)

cos(Mt∗) + (Mt∗) sin(Mt∗)
]
,

η4 = c
√

Re
πt∗

e
−( c

2Re
4t∗ +

cNtRe
2 )

ψ3

[(
c2Re
4t∗ −X1t

∗
)

sin(Mt∗)− (Mt∗) cos(Mt∗)
]
,

η5 = d
√

Re
πt∗

e
−( d

2Re
4t∗ +

dNtRe
2 )

ψ4

[(
d2Re
4t∗ −X1t

∗
)

cos(Mt∗) + (Mt∗) sin(Mt∗)
]
,

η6 = d
√

Re
πt∗

e
−( d

2Re
4t∗ +

dNtRe
2 )

ψ4

[(
d2Re
4t∗ −X1t

∗
)

sin(Mt∗)− (Mt∗) cos(Mt∗)
]
,

η7 =
{
ce
−
(

c2Re
4t∗ +

cNtRe
2

)
(c2Re−N2

t Ret∗2)
+ de

−
(

d2Re
4t∗ +

dNtRe
2

)
(d2Re−N2

t Ret∗2)

}
(m cos(Mt∗)−M sin(Mt∗)),

η8 = a
√

Re
πt∗

e
−
(

a2Re
4t∗ +

aNtRe
2

)
ψ1

[(
a2Re
4t∗ −X1t

∗
)

sin(Mt∗)− (Mt∗) cos(Mt∗)
]
,

η9 = b
√

Re
πt∗

e
−
(

b2Re
4t∗ +

bNtRe
2

)
ψ2

[(
b2Re
4t∗ −X1t

∗
)

sin(Mt∗)− (Mt∗) cos(Mt∗)
]
,

η10 =
{
ce
−
(

c2Re
4t∗ +

cNtRe
2

)
(c2Re−N2

t Ret∗2)
+ de

−
(

d2Re
4t∗ +

dNtRe
2

)
(d2Re−N2

t Ret∗2)

}
(m sin(Mt∗) +M cos(Mt∗)),

ψ1 =
(
a2Re
4t∗ −X1t

∗
)2

+ (Mt∗)2, ψ2 =
(
b2Re
4t∗ −X1t

∗
)2

+ (Mt∗)2,

ψ3 =
(
c2Re
4t∗ −X1t

∗
)2

+ (Mt∗)2, ψ4 =
(
d2Re
4t∗ −X1t

∗
)2

+ (Mt∗)2.

For large values of time t∗, it is seen from the expressions (26) and (27) that
flow-field is in quasi-steady state. Steady flows represented by u∗is(y

∗) and
w∗is(y

∗) are confined within a thin modified Ekman-Hartmann boundary
layer of thickness O(((NtRe

2 ) + α
√
Re)

−1). It is noticed from Eq. (22) that
α decreases on increasing Da whereas it increases on increasing H2

a which
implies that the thickness of modified Ekman-Hartmann boundary layer
increases on increasing Da whereas it decreases on increasing H2

a . Boundary
layer thickness profiles are depicted for various values of Be, Bi,K

2 and Nt

and are represented in Figs. 2 and 3. It is observed from Fig. 2 that
the thickness of modified Ekman-Hartmann boundary layer increases on
increasing both Be and Bi. It is evident from Fig. 3 that the thickness
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a = 25 and Da = 1.0.

of modified Ekman-Hartmann boundary layer decreases on increasing both
K2 and Nt(> 0) and it increases on increasing Nt(< 0).

It is also observed from Eqs. (28) and (29) that steady flow executes
spatial oscillations in the flow-field excited by Hall current, ion-slip, ro-
tation, magnetic field, permeability and suction/injection. It is evident
from expressions (30) to (35) that unsteady flow exhibits inertial oscilla-
tion in the flow-field excited by Hall current, ion-slip, rotation and mag-
netic field. It is also demonstrated from Eqs. (30) to (35) that unsteady
flow, represented by u∗it(y

∗, t∗) and w∗it(y
∗, t∗) are divided into two parts

viz. u∗it1(y∗, t∗), w∗it1(y∗, t∗) and u∗it2(y∗, t∗), w∗it2(y∗, t∗). The inertial oscilla-
tions in u∗it1(y∗, t∗) and w∗it1(y∗, t∗) damped out effectively in dimensionless

time of O(X−1
1 ), whereas that in u∗it2(y∗, t∗) and w∗it2(y∗, t∗) damped out

effectively in dimensionless time of O(m−1) when the final steady state is
developed. This shows that suction/injection tends to reduce time of decay
of inertial oscillations in the major part of unsteady flow. It may be noted
that in absence of suction/injection, time of decay of inertial oscillations in
the unsteady flow is enhanced due to presence of Hall current, ion-slip and
permeability. It is also seen from Eqs. (30) to (35) that, even in the absence
of both Hall current and rotation, there are no inertial oscillations in the
flow-field. This implies that both the Hall current and rotation induced
inertial oscillations in the flow-field for large values of time t∗. This result
is in agreement with the result obtained by Seth et al. [36].
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5 Results and discussion

To study the effects of Hall current, ion-slip, rotation, magnetic field, per-
meability, suction/injection and time on the flow-field, the numerical values
of the primary and secondary fluid velocities, computed from the analyti-
cal solution (21), are depicted graphically versus channel width variable y∗

and are represented in Figs. 4-10 for various values of Hall current parame-
ter Be, ion-slip parameter Bi, rotation parameter K2, magnetic parameter
H2
a , Darcy number Da, suction/injection parameter Nt and time t∗ taking

pressure gradient R = 5 and Reynolds number Re = 4 which is valid for
Darcian model. Fig. 4 demonstrates the effect of Hall current on the pri-
mary velocity u∗i and secondary velocity w∗i . It is revealed from Fig. 4 that
both the primary velocity u∗i and secondary velocity w∗i increase on increas-
ing Be. This implies that the Hall current tends to enhance fluid flow in
both primary and secondary flow directions. This is due to the fact that
Hall current induces secondary flow in the flow-field. Fig. 5 represents the
influence of ion-slip on the primary velocity u∗i and secondary velocity w∗i .
It is observed from Fig. 5 that the primary velocity u∗i increases whereas
the secondary velocity w∗i decreases on increasing Bi. This shows that the
ion-slip tends to enhance fluid flow in primary flow direction whereas it has
reverse effect on the fluid flow in secondary flow direction. Fig. 6 shows
the effect of rotation on the primary velocity u∗i and secondary velocity w∗i .
It is revealed from Fig. 6 that the primary velocity u∗i decreases whereas
secondary velocity w∗i increases on increasing K2. Since K2 represents the
ratio of Coriolis force to inertia force, an increase in K2 implies the increase
in the strength of Coriolis force. In a rotating system Coriolis force is gen-
erated due to rotation whose tendency is to suppress primary flow and to
induce secondary flow into the flow-field. Thus, rotation tends to retard
fluid flow in the primary flow direction whereas it has a reverse effect on
fluid flow in the secondary flow direction which is also characteristics of
Hall current. Fig. 7 depicts the effect of magnetic field on the primary
velocity u∗i and secondary velocity w∗i . It is evident from Fig. 7 that both
the primary velocity u∗i and secondary velocity w∗i decrease on increasing
H2
a which implies that magnetic field tends to retard fluid flow in both

the primary and secondary flow directions. This is due to the fact that
when an electrically conducting fluid flows in the presence of a magnetic
field, a mechanical force, known as Lorentz force, is generated in the flow-
field whose tendency is to resist fluid flow. Fig. 8 displays the influence
of permeability on the primary velocity u∗i and secondary velocity w∗i . It
is observed from Fig. 8 that both the primary velocity u∗i and secondary
velocity w∗i increase on increasing Da. This implies that permeability tends
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to enhance fluid flow in both primary and secondary flow directions. Fig. 9
demonstrates the effect of suction/injection on the primary velocity u∗i and
secondary velocity w∗i . It is revealed from Fig. 9 that the primary velocity
u∗i increases on increasing Nt(> 0) and decreases on increasing Nt(< 0)
whereas the secondary velocity w∗i is oscillatory in nature on increasing Nt.
This implies suction tends to enhance fluid flow in primary flow direction
whereas injection has reverse effect on it and fluid flow in secondary flow
direction is oscillatory in nature due to suction/injection. Fig. 10 depicts
the effect of time on the primary velocity u∗i and secondary velocity w∗i . It
is evident from Fig. 10 that the primary velocity u∗i increases on increas-
ing t∗ when 0.25 ≤ t∗ ≤ 0.50, attains its maximum and again decreases
on increasing t∗ when 0.50 < t∗ ≤ 1.0 whereas the secondary velocity w∗i
increases on increasing t∗. This implies that the fluid flow in the primary
flow direction is getting enhanced as time progresses when 0.25 ≤ t∗ ≤ 0.50
whereas it has reverse effect on the fluid flow in primary flow direction when
0.50 < t∗ ≤ 1.0. Fluid flow in secondary flow direction is enhanced as time
passes. There exists a cross flow in the vicinity of the moving plate of the
channel due to impulsive movement of the upper plate.
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The numerical values of dimensionless shear stress at the moving plate
due to the primary and secondary flows computed from the analytical ex-
pression (23), are presented graphically in Figs. 11 - 14 for various values
of Be, Bi,K

2, H2
a , Da, Nt, t

∗ and R taking Re = 4. It is found from Fig.
11 that the primary shear stress τ∗xi decreases whereas the secondary shear
stress τ∗zi increases on increasing Be. Both the primary shear stress τ∗xi and
secondary shear stress τ∗zi increase on increasing Bi. This implies that Hall
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a =
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current tends to reduce primary shear stress at the moving plate whereas
it has reverse effect on the secondary shear stress at the moving plate. Ion-
slip tends to enhance both the primary and secondary shear stresses at the
moving plate. It is observed from Fig. 12 that both the primary shear stress
τ∗xi and secondary shear stress τ∗zi decrease on increasing K2. The primary
shear stress τ∗xi increases on increasing H2

a whereas the secondary shear
stress τ∗zi decreases on increasing H2

a when 1 ≤ K2 ≤ 3 and it increases
on increasing H2

a when 3 < K2 ≤ 4. This implies that rotation tends to
reduce both the primary and secondary shear stresses at the moving plate.
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Magnetic field tends to enhance primary shear stress at the moving plate
and secondary shear stress at the moving plate when 3 < K2 ≤ 4 whereas
it has reverse effect on the secondary shear stress at the moving plate when
1 ≤ K2 ≤ 3. It is revealed from Fig. 13 that the primary shear stress
τ∗xi decreases whereas secondary shear stress τ∗zi increases on increasing Da

which implies that permeability tends to reduce primary shear stress at the
moving plate whereas it has reverse effect on the secondary shear stress at
the moving plate. It is observed from Fig. 14 that both the primary shear
stress τ∗xi and secondary shear stress τ∗zi increases on increasing t∗ as well as
R. This implies that both the time and pressure gradient tend to enhance
both the primary and secondary shear stresses at the moving plate.

To compare our results with the results obtained by Beg et al. [6], we
have drawn velocity profiles at the centre of the channel versus time t∗ for
various values of Da taking Be = 3, Bi = 3,K2 = 0, H2

a = 100, Nt = 1, R =
5 and Re = 5 and are presented in Figs. 15 and 16. It is observed from
Figs. 15 and 16 that both the primary velocity u∗i and secondary velocity
w∗i increase on increasing Da at the centre of the channel. We also note
that the steady state attained considerably quicker with strongest Darcian
drag force (lower Da value, Da = 0.01). This is in agreement with the
result obtained by Beg et al. [6] using network numerical solution method.
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6 Conclusion

In present investigation the effects of Hall current and ion-slip on unsteady
hydromagnetic generalized Couette flow in a rotating Darcian channel is
studied. Significant outcomes are summarized below:

For small values of time t∗, their arises Rayleigh boundary layer in the
vicinity of the moving plate. It is also noticed that the primary velocity
is independent of rotation whereas secondary velocity is independent of
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permeability. The primary velocity has significant effects of Hall current,
ion-slip, magnetic field and permeability whereas the secondary velocity
has significant effects of Hall current, ion-slip, rotation and magnetic field.
However both the primary and secondary velocities are considerably af-
fected by suction/injection. For large values of time t∗, flow-field is in
quasi-steady state. Steady flow is confined within a thin modified Ekman-
Hartmann boundary layer. It is also seen that steady flow executes spatial
oscillations in the flow-field excited by Hall current, ion-slip, rotation, mag-
netic field, permeability and suction/injection. Unsteady flow exhibits in-
ertial oscillation in the flow-field excited by Hall current and rotation which
is in agreement with the result obtained by Seth et al. [36]. Hall current
tends to enhance fluid flow in both primary and secondary flow directions
whereas ion-slip tends to enhance fluid flow in primary flow direction and
it has reverse effect on the fluid flow in secondary flow direction. Rotation
tends to retard fluid flow in the primary flow direction and it has reverse
effect on the fluid flow in the secondary flow direction whereas magnetic
field tends to retard fluid flow in both the primary and secondary flow
directions. Permeability tends to enhance fluid flow in both primary and
secondary flow directions whereas suction tends to enhance fluid flow in
primary flow direction and injection has reverse effect on it. Fluid flow
in the primary flow direction is getting enhanced as time progresses when
0.25 ≤ t∗ ≤ 0.50 whereas it has reverse effect on the fluid flow in primary
flow direction when 0.50 < t∗ ≤ 1.0. Fluid flow in secondary flow direction
is enhanced as time passes.

Hall current tends to reduce primary shear stress at the moving plate
and it has reverse effect on the secondary shear stress at the moving plate
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whereas ion-slip tends to enhance both the primary and secondary shear
stresses at the moving plate. Rotation tends to reduce both the primary
and secondary shear stresses at the moving plate. Magnetic field tends to
enhance primary shear stress at the moving plate and secondary shear stress
at the moving plate when 3 < K2 ≤ 4 whereas it has reverse effect on the
secondary shear stress at the moving plate when 1 ≤ K2 ≤ 3. Permeability
tends to reduce primary shear stress at the moving plate and it has reverse
effect on the secondary shear stress at the moving plate. Both the time and
pressure gradient tend to enhance both the primary and secondary shear
stresses at the moving plate.
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