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F-REGULARITY RELATIVE TO MODULES

F. DOROSTKAR ∗ AND R. KHOSRAVI

Abstract. In this paper we will generalize some of known results
on the tight closure of an ideal to the tight closure of an ideal
relative to a module .

1. introduction

Throughout of this paper, R will denote a commutative Noetherian
ring with identity and with a positive prime characteristic p. Further
N will denote the set of nonnegative integers and R◦ will denote the
subset of R consisting of all elements which are not contained in any
minimal prime ideal of R.

The main idea of tight closure of an ideal in a commutative Noe-
therian ring (with a positive prime characteristic) was introduce by
Hochster and Huneke in [4].

Let I be an ideal of R. We recall that an element x of R is said to
be in tight closure, I∗, of I, if there exists an element c ∈ R◦ such that
for all sufficiently large e, cxpe ∈ (ip

e
: i ∈ I). The ideal (ip

e
: i ∈ I) is

denoted by I [p
e] and is called the eth Frobenius power of I. In particular

if I = (a1, a2, ..., an), then we have I [p
e] = (ap

e

1 , ap
e

2 , ..., ap
e

n ). The reader
is referred to [6] for the tight closure of an ideal.

In the remainder of this paper, to simplify notation, we will write q to
stand for a power pe of p. For any ideals I and J , I [q] +J [q] = (I+J)[q],
I [q]J [q] = (IJ)[q].
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In [2], the dual notion of tight closure of ideals relative to modules
was introduced and some properties of this concept which reflect results
of tight closure in the classical situation were obtained. It is appropriate
for us to begin by briefly summarizing some of main aspects.

Let M be an R−module and let I and J be ideals of R. Then I is
an F−reduction of J relative to M if I ⊆ J and there exists c ∈ R◦

such that
(0 :M I [q]) ⊆ (0 :M cJ [q]) for all q � 0.

It is straightforward to see that the set of ideals of R which have I as
an F−reduction relative to M has a unique maximal member, denoted
by I∗[M ], and called the tight closure of I relative to M . This is in fact
the largest ideal which has I as F−reduction relative to M (see [2]).

An element x of R is said to be tightly dependent on I relative to
M if there exists an element c ∈ R◦ such that

(0 :M I [q]) ⊆ (0 :M cxq) for all q � 0.

Moreover in [2], it was shown that

I∗[M ] = {x ∈ R : x is tight dependent on I relative to M}.
In this paper we will prove some new properties for tight closure of

an ideal relative to a module which reflect some results of tight closure
in the classical situation.[1, 3.17]

2. Tightly closed relative to a module

In this section, we study some related results for these ideals which
are tightly closed relative to a module.

Definition 2.1. (See [2]) Let I be an ideal of R and let M be an
R−module. I is said to be tightly closed relative to M if I∗[M ] = I.

Remark 2.2. Let M be an R−module and let S be a multiplicatively
closed subset of R. Let u

1
∈ (S−1I)∗[S

−1M ]. Then there exists c
1
∈

(S−1R)◦ such that

(0 :S−1M (S−1I)[q]) ⊆ (0 :S−1M

c

1
(
u

1
)q) for all q � 0.

By using the similar method which is used in by [5, 4.14], without
losing the generality, we can assume c ∈ R◦.

Let h : R → T be a homomorphism of a ring R into a ring T . For
every ideal I of R, Ie will denote the extension of I to T . Also for
every ideal J of T , J c will denote the contraction of J to R.
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Proposition 2.3. Let T be another commutative Noetherian ring of
positive prime characteristic p and let h : R → T be a ring homomor-
phism such that h(R◦) ⊆ T ◦. Further assume that M is a T−module.

(a) If I is an ideal of R, then (I∗[M ])e ⊆ (Ie)∗[M ].
(b) If the ideal J of T is tightly closed relative to M , then J c is

tightly closed relative to M .

Proof. (a) Let y ∈ h(I∗[M ]). Then there exists x ∈ I∗[M ] such that
y = h(x). Since x ∈ I∗[M ], there exists c ∈ R◦ such that

(0 :M I [q]) ⊆ (0 :M cxq) for all q � 0.

It follows that

(0 :M (Ie)[q]) ⊆ (0 :M h(c)yq) for all q � 0,

where h(c) ∈ h(R◦) ⊆ T ◦. This shows that (I∗[M ])e ⊆ (Ie)∗[M ].
(b) This follows from (a). �

Corollary 2.4. Let I be an ideal of R. For every P ∈ Spec(R), we
have

I∗[E(R/P )]RP = (IRP )∗[E(R/P )].

Proof. This follows from Proposition 2.3(a), and Remark 2.2,
�

Theorem 2.5. Let (R,m) be a local Noethrian ring of characteristic
p. Let E = E(R/m) and let x1, x2, ..., xd ∈ m be a regular sequence.

(a) If J = (x1, x2, ..., xd−1), then (J∗[E] :R xd) = J∗[E];
(b) If the ideal (x1, x2, ..., xd) is tightly closed relative to E, then

the ideal (x1, x2, ..., xi) is tightly closed relative to E for every
1 ≤ i ≤ d.

Proof. (a) Let I = (x1, x2, ..., xd). Since I ∩ (R −m) = ∅, x1

1
, x2

1
, ..., xd

1

is a regular sequence in Rm. Now let u ∈ (J∗[E] :R xd). Then there
exists c ∈ R◦ such that

(0 :E J [q]) ⊆ (0 :E c(xdu)q) for all q � 0.

By [3, Corollary 1.6], we have

c

1

(xdu)q

1
∈ J [q]Rm.



44 F. DOROSTKAR AND R. KHOSRAVI

Since x1
q

1
, x2

q

1
, ..., xd

q

1
is a regular sequence in Rm, we have c

1
uq

1
∈ J [q]Rm.

Now by [3, Corollary 1.6], we can conclude that

(0 :E J [q]) ⊆ (0 :E cuq) for all q � 0.

Hence u ∈ J∗[E].
(b) Without loss of generality, we may assume that i = d − 1. Let

J = (x1, x2, ..., xd−1) and u ∈ J∗[E]. Then u ∈ (J +xdR)∗[E] = J +xdR.
So there exist j ∈ J and r ∈ R such that u = j + xdr. By using part
(a), we see that r ∈ J∗[E]. Thus J∗[E] = J + xdJ

∗[E]. Now Nakayama’s
Lemma shows that J∗[E] = J . �

Theorem 2.6. Let (R,m) be a local ring and let x1, x2, ..., xt ∈m be an
R−sequence. Let E be an injective R−module such that |AssR(E)| <
∞. Then the ideal (x1, x2, ..., xt) of R is tightly closed relative to E if
and only if the ideal (x1

n, x2
n, ..., xt

n) of R is tightly closed relative to
E for all n ∈ N.

Proof. (⇐) This is clear.
For the converse, assume that the ideal (x1, x2, ..., xt) of R is tightly

closed relative to M . For any positive integer n, we set

Jn = (x1
n, x2

n, ..., xt
n).

We will show Jn
∗[E] = Jn for all n ≥ 2. Let z ∈ (Jn)∗[E] \ Jn and

suppose that there exists 1 ≤ i1 ≤ t, such that z1 = zxi1 /∈ Jn. We
can choose xi1 , xi2 , ..., xik ∈ {x1, x2, ..., xt} (not necessary distinct) such
that zk = zxi1xi2 ...xik /∈ Jn but zkxi ∈ Jn for all 1 ≤ i ≤ n. Then
zk(x1, x2, ..., xt) ⊆ Jn. Since x1, x2, ..., xt is an R−sequence,

zk ∈ (Jn : (x1, ..., xt)) = (Jn, y
n−1),

where y = x1x2...xt. So

zk =
t∑

i=1

rixi
n + uyn−1,

where u, r1, r2, ..., rt ∈ R. Now let E =
⊕
i∈I

E(R/Pi). Since |AssR(E)| <

∞, Jn
∗[E] =

⋂
i∈I

Jn
∗[E(R/Pi)]. This shows that

uyn−1 ∈ (Jn)∗[E(R/Pi)] ∀i ∈ I.

For every i ∈ I, if {x1, x2, ..., xt} ∩ Pi 6= ∅, then u ∈ J1
∗E(R/Pi). Other-

wise, since uyn−1 ∈ (Jn)∗[E(R/Pi)], there exists c ∈ R◦ such that

(0 :E(R/Pi) Jn
[q]) ⊆ (0 :E(R/Pi) c(uy

n−1)q) for all q � 0.



F-REGULARITY RELATIVE TO MODULES 45

By [3, Corollary 1.6], we have

c(uyn−1)q

1
∈ Jn

[q]RPi
.

Thus
cuq

1
∈ (

x1
nq

1
, ...,

xt
nq

1
:
yqn−1)

1
) = J1

[q]RPi
.

Hence by [3, 1.6],

(0 :E(R/Pi) J1
[q]) ⊆ (0 :E(R/Pi) cu

q) for all q � 0.

This implies that

u ∈ J1
∗[E(R/Pi)] ∀i ∈ I.

Hence u ∈ J1
∗[E] = J1. So uyn−1 ∈ Jn and this shows that zk ∈ Jn.

This contradiction shows (Jn)∗[E] = Jn. �

Corollary 2.7. Let (R,m) be a Cohen-Macaulay ring and let x1, x2, ...,
xt ∈m be a system of parameters of R. Let E be an injective R−module
such that |AssR(E)| <∞. Then the ideal (x1, x2, ..., xt) of R is tightly
closed relative to E if and only if the ideal (x1

n, x2
n, ..., xt

n) of R is
tightly closed relative to E for all n ∈ N.

Proof. By assumption x1, x2, ..., xt ∈ m is an R−sequence. Now the
proof follows from Theorem 2.6. �

3. F-regularity and weakly F−regularity relative to a
module

Definition 3.1. Let M be an R−module. Then R is said to be weakly
F−regular relative to M if every ideal of R is tightly closed relative to
M . Furthermore, if for every multiplicative closed subset S of R, S−1R
is weakly F−regular relative to S−1M , then R is said to be F−regular
relative to M .

Lemma 3.2. Let M be an R−module. If R is F−regular relative to
M , then R is weakly F−regular relative to M .

Proof. Let I be an ideal of R and let x ∈ I∗[M ] \ I. Then there exists
a prime ideal P of R, such that (I : x) ⊆ P . Since R is F−regular
relative to M , RP is weakly F−regular relative to M . Thus

(IRP )∗[MP ] = IRP .

By Proposition 2.3, we have x
1
∈ (I∗[M ])RP ⊆ (IRP )∗[MP ] = IRP . Then

there exists a ∈ I and t ∈ R \ P such that x
1

= a
t
. It follows that there

exists w ∈ R \ P with wt ∈ (I : x) ⊆ P . This is a contradiction. �
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Lemma 3.3. R is F−regular relative to M if and only if for every
prime ideal P of R, RP is weakly F−regular relative to MP .

Proof. (⇒) This is clear.
(⇐) Let S be a multiplicatively closed subset of R. we will show that

S−1R is weakly F−regular relative to S−1M . Let x
1
∈ (S−1I)∗[S

−1M ] \
S−1I. Then there exists c

1
∈ (S−1R)◦ such that

(0 :S−1M (S−1I)[q]) ⊆ (0 :S−1M

c

1
(
x

1
)q) for all q � 0.

By Remark 2.2, we can assume that c ∈ R◦. Since x
1

/∈ S−1I, (I :
x) ∩ S = ∅. Let P be a prime ideal such that (I : x) ⊆ P and
P ∩ S = ∅. Now we can see that c

1
∈ (RP )◦ and

(0 :MP
(IRP )[q]) ⊆ (0 :MP

c

1
(
x

1
)q) for all q � 0.

Then x
1
∈ (IRP )∗[MP ]. Since (I : x) ⊆ P , x

1
∈ (IRP )∗[MP ] \ IRP . But

This is a contradiction by assumption. This contradiction shows that
(S−1I)∗[S

−1M ] = S−1I. Hence S−1R is weakly F−regular relative to
S−1M . �

Lemma 3.4. Let I be an ideal of R and let M be an R−module. Let
S be a multiplicatively closed subset of R. Then we have the following

(a) S−1(I∗[M ]) ⊆ (S−1I)∗[S
−1M ].

(b) If S ∩ Zd(M) = ∅, then

S−1(I∗[M ]) = (S−1I)∗[S
−1M ].

Proof. The proof is straightforward. �

Theorem 3.5. Let I be an ideal of R and let M be a Noetherian
R−module. Let S be a multiplicatively closed subset of R. Then

S−1(I∗[M ]) = (S−1I)∗[S
−1M ].

Proof. Since M is a Noetherian R−module, there exists q′ such that

(0 :M I [q]) = (0 :M I [q
′])

for every q ≥ q′. Let x
1
∈ (S−1I)∗[S

−1M ]. Then there exists c
1
∈ (S−1R)◦

such that

(0 :S−1M (S−1I)[q]) ⊆ (0 :S−1M

c

1
(
x

1
)q) for all q � 0.

By Remark 2.2, we can choose c ∈ R◦ and t ∈ S such that

(0 :M I [q]) ⊆ (0 :M c(tx)q) for all q � q′.
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Then tx ∈ I∗[M ] and
x

1
=

tx

t
∈ S−1(I∗[M ]).

This shows that (S−1I)∗[S
−1M ] ⊆ S−1(I∗[M ]). Now the proof is com-

pleted by Lemma 3.4. �

Corollary 3.6. Let M be a Noetherian R−module. If R is weakly
F−regular relative to M then R is F−regular relative to M .

Proof. This is clear from Theorem 3.5. �

Theorem 3.7. Let R be a regular ring and let I be an ideal of R.

(a) For every P ∈ Spec(R), we have I∗[E(R
P
)] = I.

(b) For every injective R−module E, we have I∗[E] = I.

Proof. (a) Let x ∈ I∗[E(R
P
)] \ I. Then there exists an element c ∈ R◦

such that

(0 :E(R
P
) I

[q]) ⊆ (0 :E(R
P
) cx

q) for all q � 0.

By [3, 1.6], we have

cxq

1
∈ I [q]RP for all q � 0.

This follows that c
1
∈

⋂
q

(I [q]RP : xq

1
). By assumption, R is a regular

ring. Then [4, 4.3] implies that
c

1
∈
⋂
q

(IRP :
x

1
)[q] ⊆

⋂
q

(PRP )q = 0,

which is a contradiction. So we conclude that I∗[E(R
P
)] = I.

(b) We have E ∼=
⊕

P∈AssR(E)

E(R/P ). Then I∗[E] ⊆
⋂

P∈AssR(E)

I∗[E(R/P )].

But by part (a), for every P ∈ AssR(E), we have I∗[E(R/P )] = I. This
shows that I∗[E] ⊆ I. Now the assertion follows from [2, 2.7(a)]. �

Corollary 3.8. Let R be a regular ring. Then we have the following.

(a) R is weakly F−regular relative to every injective R−module E.
(b) R is F−regular relative to every injective R−module E.

Proof. (a) This follows from Theorem 3.7(b).
(b) Let S be a multiplicative subset of R and let E be an injec-

tive R-module. Then S−1R is a regular ring and S−1E is an injective
S−1R−module. Now the claim follows from part (a). �
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4. Integral closure of an ideal relative to some module
and the Briançon-Skoda theorem

Definition 4.1. (See [1]). Let I and J be ideals of R and let M be
an R−module. Then I is said to be a reduction of J relative to M if
I ⊆ J and there exists a positive integer n such that

(0 :M IJn) = (0 :M Jn+1).

Since R is Noetherian ring, the set of ideals of R which have I as a re-
duction relative to M has a unique maximal member which is denoted
by I∗(M) and is called the integral closure of I relative to M .

Definition 4.2. (See [1]). Let I be an ideal of R and let M be an
R−module. An element x of R is said to be integrally dependent on I
relative to M if there exists a positive integer n such that

(0 :M

n∑
i=1

xn−iI i) ⊆ (0 :M xn).

Definition 4.3. (See [1]). A subset T of Ass(R) has reduced property
if for every P ∈ T , there exists an element x ∈ R such that P = Ann(x)
and x2 6= 0.

Remark 4.4. Let I be an ideal of R and M be an R−module. Then

I∗(M) = {x ∈ R : x is integrally dependent on I relative to M}
in each of the following cases:

(a) M is an Artinian R−module (see [5]);
(b) M is an injective R−module (see [3, 2.7];
(c) AssR(M) ⊆ Ass(R) and AssR(M) has reduced property (see

[1, 3.10]).

The following theorem is proved by a similar technique used in [4,
5.4].

Theorem 4.5. (generalized Briançon-Skoda theorem). Let I be an
ideal of R generated by n elements and let ht(I) > 0. Let M be an
R−module. Then for every m ∈ N, we have

(In+m)∗(M) ⊆ (Im+1)∗[M ]

and in particular (In)∗(M) ⊆ (I∗[M ] in each of the following cases:
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(a) M is an Artinian R−module ;
(b) M is an injective R−module ;
(c) AssR(M) ⊆ Ass(R) and AssR(M) has reduced property.

Proof. Suppose I is generated by u1, u2, ..., un. If

(In+m)∗(M) ⊆ (Im+1)∗[M ] ∪
⋃

P∈Min(R)

P,

then since ht(I) > 0, we have (In+m)∗(M) ⊆ (Im+1)∗[M ]. So we as-
sume to the contrary that (In+m)∗(M) is not contained in the union
(Im+1)∗[M ]∪

⋃
P∈Min(R)

P . Then there exists y ∈ (In+m)∗(M)− (Im+1)∗[M ]

such that y ∈ R◦. By Remark 4.4, y is integrally dependent on In+m

relative to M . Let J = In+m. Then J is a reduction of J +Ry relative
to M by [1, 2.11]. This implies that there is a positive integer k such
that

(0 :M (J + yR)k+h) = (0 :M Jh+1(J + yR)k−1)

for every h ∈ N. But

(0 :M Jh) ⊆ (0 :M Jh+1(J+yR)k−1) = (0 :M (J+yR)k+h) ⊆ (0 :M yhyk)

for all h ∈ N. Just as proved in [4, 5.4], Jh = Ihn+hm is gener-
ated by monomials of degree hn + hm in the ui. So Jh = Ihn+hm ⊆
(u1

h, u2
h, ..., un

h)m+1. This shows that

(0 :M (u1
h, u2

h, ..., un
h)m+1) ⊆ (0 :M yhyk),

for every h ∈ N. When h has the form q = pe, we have

(0 :M (Im+1)[q]) = (0 :M (u1
q, u2

q, ..., un
q)m+1) ⊆ (0 :M yqyk)

where yk ∈ R◦. Hence y ∈ (Im+1)∗[M ]. �

Corollary 4.6. Let I is an ideal of R generated by n elements and
ht(I) > 0. Further assume that M is an R−module such that

(a) M is an Artinian R−module or
(b) M is an injective R−module or
(c) AssR(M) ⊆ Ass(R) and AssR(M) has reduced property.

If R is weakly F−regular relative to M , then

(In)∗(M) ⊆ I.

Proof. This follows from Theorem 4.5.
�
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