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STRONGLY COTOP MODULES

H. ANSARI-TOROGHY ∗, S. S. POURMORTAZAVI, AND S. KEYVANI

Abstract. In this paper, we introduce the dual notion of strongly
top modules and study some of the basic properties of this class of
modules.

1. Introduction

Throughout this article, R denotes a commutative ring with identity
and all modules are unitary. Also the notation Z (resp. Q) will denote
the ring of integers (resp. the field of fractions of Z). If N is a subset of
an R-moduleM , then N ≤M denotes N is an R-submodule ofM . For
any ideal I of R containing AnnR(M), R̄ and Ī denote R/AnnR(M)
and I/AnnR(M), respectively. The colon ideal of M into N is defined
to be (N :M) = {r ∈ R : rM ⊆ N} = AnnR(M/N).

Let M be an R-module. A non-zero submodule S of M is said to be
second if for each a ∈ R the homomorphism S

a→ S is either surjective
or zero. This implies that AnnR(S) = p is a prime ideal of R and S is
said to be p-second (see [16]).

The second spectrum of M is defined as the set of all second sub-
modules of M and denoted by Specs(M) or Xs. We call the map

ψ : Xs → Spec(R) given by S 7→ AnnR(S) as the natural map of Xs.
Let N be a submodule of M . Define V s(N) := {S ∈ Specs(M) :

AnnR(N) ⊆ AnnR(S)} and set ζs(M) := {V s(N) : N ≤ M}. Then
there exists a topology, τ s say, on Specs(M) having ζs as the family
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of all its closed sets. This topology is called the Zariski topology on
Specs(M) (see [2]).

For any submodule N of M , define V s∗(N) = {S ∈ Specs(M) : S ⊆
N}. Set ζs∗(M) = {V s∗(N) : N ⊆ M}. Then ζs∗(M) contains the
empty set and Specs(M), and it is closed under arbitrary intersections.
In general ζs∗(M) is not closed under finite unions. A module M is
called a cotop module if ζs∗(M) is closed under finite unions. In this
case, ζs∗(M) is called the quasi Zariski topology (see [2]).

For a submodule N of M , the second radical (or second socle) of N
is defined as the sum of all second submodules of M contained in N
and denoted by sec(N) (or soc(N)). In case N does not contain any
second submodule, the socle of N is defined to be (0) . Also, N ̸= (0)
is said to be a socle submodule of M if sec(N) = N (see [4, 10]).
M is said to be Xs-injective (resp. secondful) if the natural map

of Xs is injective (resp. surjective). Equivalently, M is Xs-injective if
and only if AnnR(S1) = AnnR(S2), S1, S2 ∈ Xs, implies that S1 = S2

if and only if for every p ∈ Spec(R), |Specsp(M)| ≤ 1 (see [7, 11]).
A second submodule S of M is said to be extraordinary if whenever

N and K are socle submodules of M with S ⊆ N +K then S ⊆ N or
S ⊆ K (see [2]).

A proper submodule N of M is said to be completely irreducible if
N =

∩
i∈I Ni, where {Ni}i∈I is a family of submodules of M , implies

that N = Ni for some i ∈ I (see [12]).
Let p be a prime ideal of R and let N be a submodule of M . Then

N ec = {m ∈ M : cm ∈ N for some c ∈ R\p} and it is called the
p-closure of N and denoted by clP (N) (see [14, p. 92]). The dual
of this notion, i.e., p-interior of N relative to M is defined as the set
IMp (N) :=

∩
{L|L is a completely irreducible submodule of M and

rN ⊆ L for some r ∈ R\p} (see [4]).
Let R be an integral domain. A submodule N of M is said to be

cotorsion-free (resp. cotorsion) if IM0 (N) = N (resp. IM0 (N) = (0))
(see [3]).
M is said to be a comultiplication module if for every submodule N

of M there exists an ideal I of R such that N = (0 :M I) (see [5]).
The concept of strongly top modules was introduced and investigated

in [1] and [6].
In this paper, we introduce the dual notion of strongly top R-modules

and obtain some related results.
In section 2, among other results, we obtain some useful characteri-

zation for strongly cotop modules (see Theorem 2.5). In Theorem 2.9,
we consider some conditions under which an R-module is an strongly
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cotop module. Furthermore, in Proposition 2.17 and Corollary 2.20, we
study the behavior of an strongly cotop module under colocalization.
More information about colocalization of certain modules can be found
in Theorem 2.19. Finally, in Theorem 2.22 we investigate the interplay
between strongly cotop modules and spectral spaces.

2. Main results

Definition 2.1. Let M be a cotop R-module. We say that M is a
strongly cotop module (or simply s-cotop module) if τ sM = τ s∗M .

Remark 2.2. ([2, Theorem 2.5]). Let M be an R-module. Then the
following statements are equivalent.

(a) M is a cotop module.
(b) Every second submodule of M is extraordinary.
(c) V s∗(N) ∪ V s∗(K) = V s∗(N + K) for any socle submodules N

and K of M .

Example 2.3. (a) Every comultiplication R-module is an s-cotop
module.

(b) Not every s-cotop module is a comultiplication module. For
example, let M = Z. Then SpecsZ(M) = ∅. Hence M is an
s-cotop Z-module, But it is not a comultiplication Z-module.

(c) Every s-cotop R-module is a cotop module.
(d) Not every cotop module is an s-cotop module. For example, let

M = Q ⊕ Zp (as Z-module) for some prime integer p. Then
SpecsZ(M) = {Q ⊕ 0, 0 ⊕ Zp}. Hence by Remark 2.2, M is a
cotop Z-module but it is not an s-cotop Z-module.

Proposition 2.4. (a) Every s-cotop R-module is an Xs-injective
R-module.

(b) Every submodule of an s-cotop R-module is s-cotop.
(c) Every homomorphic image of an s-cotop module is not neces-

sarily s-cotop.
(d) If M = ⊕i∈IMi is an s-cotop module, then each Mi is s-cotop

for i ∈ I.

Proof. (a) Let S1, S2 ∈ Specs(M) and (0 :R S1) = (0 :R S2). Thus
(0 :M (0 :R S1)) = (0 :M (0 :R S2)). Since M is an s-cotop
module, we have V s∗(S1) = V s∗(S2). This implies that S1 = S2.

(b) It is trivial.
(c) Set M = Z ⊕ Zp. Then M is an s-cotop Z-module, but its

homomorphic image Zp ⊕ Zp is not. In fact we have

Zp ⊕ Zp ⊆ (Zp ⊕ 0) + (0⊕ Zp).
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This implies that Zp⊕Zp is not s-cotop module by Remark 2.2
and Example 2.3 (c).

(d) By part(b).
□

For an R-module M the set Ω(M) is defined as

Ω(M) = {p ∈ V (AnnR(M)) | IMp ((0 :M p)) ̸= (0)}.

Theorem 2.5. Consider the following statements for an R-module M .

(a) M is an s-cotop R-module;
(b) For every submodule N of M , there exists an ideal I of R such

that V s∗
M (N) = V s∗

M ((0 :M I));
(c) V s∗

M (N) = V s
M(sec(N)) for every submodule N of M , where

sec(N) =
∑

S∈SpecsR(N) S;

(d) M is an Xs-injective cotop R-module and ψ : (Xs, τ s∗) →
Im(ψ) is a closed map, where ψ is a natural map of Xs.

(e) For any p ∈ Ω(M) and for every family {pi}, where pi ∈ Ω(M),
we have

∩
i∈I pi ⊆ p⇒ IMp ((0 :M p)) ⊆

∑
i∈I I

M
pi
((0 :M pi)).

Then (a) − (d) are equivalent. Moreover, if M is an Xs-injective Ar-
tinian R-module, then (c) ⇔ (e).

Proof. (a) ⇔ (b). Let M be an s-cotop R-module and let N be a
submodule ofM . Since τ sM = τ s∗M , V s∗

M (N) is a closed subset of (Xs, τ sM).
This implies that there exists a submodule K ofM such that V s∗

M (N) =
V s
M(K). It is not difficult to see that

V s∗
M ((0 :M (0 :R K))) = V s

M(K)

as desired. The reverse implication follows from the following fact.
Let M be an R-module and let I be an ideal of R. Then

(i) τ sM ⊆ τ s∗M .
(ii) V s∗

M ((0 :M I)) = V s
M((0 :M I)).

(a) ⇔ (c). Let the situation be as in part (a). Let N be a sub-
module of M . Then Y = V s∗

M (N) is a closed subset of (Xs, τ sM).
This implies that Y = cl(Y ), where cl(Y ) is the topological closure
of Y in (Xs, τ sM). It is easy to check that cl(Y ) = V s

M(ΣS∈Y S). On
the other hand, ΣS∈Y S = sec(N). By the above arguments, we have
V s∗
M (N) = V s

M(sec(N)). The reverse implication follows from the fact
that τ sM ⊆ τ s∗M .
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(a) ⇔ (d). LetM be an s-cotop R-module and let N be a submodule
of M . It is enough to prove that

ψs(V s∗
M (N)) = VR̄((0 :R N)) ∩ Im(ψs).

To see this, let L ∈ VR̄((0 :R N)) ∩ Im(ψs). Then there exists S ∈ Xs

such that L = ψs(S) = (0 :R S) and (0 :R N) ⊆ (0 :R S). This implies
that

S ⊆ (0 :M (0 :R S)) ⊆ (0 :M (0 :R N)).

Therefore S ∈ V s
M((0 :M (0 :R N))). As in the proof (a) ⇒ (b) we have

V s∗
M (N) = V s∗

M ((0 :M (0 :R N))) = V s
M((0 :M (0 :R N))).

Hence L ∈ ψs(V s∗
M (N)) so that

VR̄((0 :R N)) ∩ Im(ψs) ⊆ ψs(V s∗
M (N)).

The reverse implication is clear.

(c) ⇔ (e). Assume that V s∗
M (N) = V s

M(sec(N)) for every submodule
N of M . Also let p ∈ Ω(M) and {pi}i∈I be a family of elements of
Ω(M) with

∩
i∈I pi ⊆ p. As M is Artinian, IMp ((0 :M p)) is a p-second

submodule of M by [4, Corollary 2.10]. Now our assumption implies
that

IMp ((0 :M p)) ∈ V s(
∑
i∈I

IMpi ((0 :M pi))).

Since

V s(sec(
∑
i∈I

IMpi ((0 :M pi)))) = V s(
∑
i∈I

IMpi ((0 :M pi))),

we have

IMp ((0 :M p)) ∈ V s(sec(
∑
i∈I

IMpi ((0 :M pi)))).

Assumption (c) implies that

IMp ((0 :M p)) ⊆
∑
i∈I

IMpi ((0 :M pi))).

For the reverse implication, let N be a submodule of M and set

Γ = {p ∈ Ω(M) | IMp ((0 :M p)) ⊆ N}.

Then sec(N) =
∑

p∈Γ I
M
p ((0 :M p)). It turns out that V s∗

M (N) =

V s
M(sec(N)), as required.

□
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An R-module M is said to be a weak comultiplication module if it
does not have any second submodule or for every second submodule S
of M , S = (0 :M I) for some ideal I of R (see [3]).

Corollary 2.6. Let M be an R-module. Then M is an s-cotop module
in the following cases.

(a) |SpecsR(M)| ≤ 1.
(b) M is weak comultiplication and |Spec(R)| < ∞. However, not

every weak comultiplication module is an s-cotop module.
(c) For every submodule N of M , sec(N) = (0 :M

√
AnnR(N)).

Proof. (a) The proof is clear, if SpecsR(M) = ∅. Now we assume
that SpecsR(M) = {K}, where K is a second submodule of M .
Let N be a submodule of M . By Theorem 2.5, it is enough to
prove that V s∗

M (N) = V s
M(sec(N)). If K ⊆ N , we are done. So

assume that K ⊈ N . Then we have sec(N) = (0). This implies
that V s∗

M (N) = V s
M(sec(N)) = ∅.

(b) Let N be a submodule of M . By Theorem 2.5, it is enough to
prove that V s∗

M (N) = V s
M(sec(N)). It is clear that V s∗

M (N) ⊆
V s
M(sec(N)). Conversely, assume that S ∈ V s

M(sec(N)). Then

(0 :R S) ⊇ (0 :R sec(N)) =
∩

W∈SpecsR(N)

(0 :R W ).

Since |Spec(R)| < ∞, there exists T ∈ SpecsR(N) such that
(0 :R S) ⊇ (0 :R T ). Hence

S = (0 :M (0 :R S)) ⊆ (0 :M (0 :R T )) = T.

Therefore S ∈ V s∗
M (N) so that V s

M(sec(N)) ⊆ V s∗
M (N). To see

the second assertion, set M =
⊕

i∈I Z/piZ, where {pi}i∈I is the
set of all prime integers. Then SpecsZ(M) = {(0 :M pi) | i ∈ I}
so that M is a weak comultiplication module. Now let N =⊕

j ̸=i∈I Z/piZ. Then V s∗(N) = {(0 :M pi) | j ̸= i ∈ I} and

V s(sec(N)) = V s(N) = Xs so thatM is not an s-cotop module
by Theorem 2.5.

(c) let N ≤M . Then by [2, Lemma 3.3 (c)], we have

V s∗(N) = V s∗(sec(N)) = V s∗((0 :M
√
AnnR(N)))

= V s((0 :M
√
AnnR(N))) = V s(sec(N)).

Hence M is a strongly cotop module by Theorem 2.5.
□
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Remark 2.7. Let S be a commutative ring with identity. S is said
to be a perfect ring if it satisfies DCC on principal ideals. Clearly,
every Artinian ring is perfect. Note that if S is a perfect ring and
p ∈ Spec(S), then by [9, Lemma 2.2], S/p is a perfect domain so that
it is a field. Hence dim(S) = 0. Furthermore, every perfect ring is a
semilocal ring by [9, Theorem P or p. 475, Examples (6)].

Lemma 2.8. Let R be a one dimensional integral domain and let M
be a non-zero Xs-injective R-module.

(i) SpecsR(M) =Min(M) ∪ Specs(0)(M), where

Min(M) = {(0 :M p) | p ∈ V (AnnR(M)) ∩Max(R), (0 :M p) ̸= (0)}.
(ii) If M is secondful, then SpecsR(M) = Min(M) ∪ Specs(0)(M),

where Min(M) = {(0 :M p) | p ∈ V (AnnR(M)) ∩Max(R)}.

Proof. Use the technique of [7, Theorem 3.16].
□

Theorem 2.9. Let M be an Xs-injective R-module. Then M is an
s-cotop module in the following cases.

(a) |Spec(R)| = |Max(R)| <∞. In particular R is an Artinian or
a perfect ring.

(b) R is a PID or one dimensional Noetherian domain and M is a
non faithful R-module.

(c) R is a PID and M is a non faithful Artinian R-module.
(d) R is a one dimensional integral domain and the summation of

every infinite number of minimal submodules of M is equal M
and sec(M) =

∑
S∈Specs

(0)
(M) S.

Proof. (a) Let N be a submodule of M . By Theorem 2.5, it is
enough to prove that V s∗

M (N) = V s
M(sec(N)). To see this, let

L ∈ V s
M(sec(N)). Then∩
W∈V s∗

M (N)

(0 :R W ) = (0 :R sec(N)) ⊆ (0 :R L).

By assumption, there exists S ∈ V s∗
M (N) such that (0 :R W ) =

(0 :R L). Since M is Xs-injective, S = L. Therefore L ∈
V s∗
M (N) so that V s

M(sec(N)) ⊆ V s∗
M (N). The reverse inclusion

is clear.
(b) We have similar arguments as in part (a).
(c) Let {pi}i∈I be a family of elements of Ω(M) such that

∩
i∈I pi ⊆

p, where p ∈ Ω(M). Since AnnR(M) ̸= (0), |Spec(R)| < ∞.
Thus I is a finite set, so pk = p for some k ∈ I. This implies
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that IMpk ((0 :M pk)) = IMp ((0 :M p)). Hence IMp ((0 :M p)) ⊆∑
i∈I I

M
pi
((0 :M pi)). Therefore M is an s-cotop R-module by

Theorem 2.5 (e).
(d) Suppose thatM ̸= (0). By Lemma 2.8, SpecsR(M) = Specs0(M)

∪Min(M), where Min(M) = {(0 :M p) | p ∈ Max(R), (0 :M
p) ̸= (0)}. Let N ≤ M . As the summation of every infi-
nite number of minimal submodules of M is M , assume that
sec(N) =

∑n
i=1(0 :M pi). It is easy to see that

V s∗(
n∑
i=1

(0 :M pi)) = V s∗((0 :M

n∩
i=1

pi)).

Therefore, by [2, Lemma 3.3 (c)], we have

V s∗(N) = V s∗(sec(N)) = V s∗(
n∑
i=1

(0 :M pi)) = V s∗((0 :M

n∩
i=1

pi))

= V s((0 :M

n∩
i=1

pi)) = V s(
n∑
i=1

(0 :M pi)) = V s(sec(N)).

Hence M is a strongly cotop module.
□

Let p be a prime ideal of R. For an R-module M , Specsp(M) denotes
the set of all p-second submodules of M .

Remark 2.10. (a) ([7, Proposition 3.12]). Let (Mi)i∈I be a family
of R-modules and let M =

⊕
i∈IMi. If M is an Xs-injective

module, then

SpecsR(M) =

{
S ⊕

(⊕
j ̸=i∈I

(0)

)
| j ∈ I, S ∈ SpecsR(Mj)

}
.

(b) A family (Mi)i∈I of R-modules is said to be second-compatible
if for all i ̸= j in I, there doesn’t exist a prime ideal p in R with
Specsp(Mi) and Spec

s
p(Mj) both nonempty.

(c) ([7, Theorem 3.14]). Let (Mi)i∈I be a family of R-modules and
let M =

⊕
i∈IMi. Then M is an Xs-injective R-module if and

only if (Mi)i∈I is a family of second-compatible Xs-injective
R-modules.

Proposition 2.11. Let R be a domain and (Mi)i∈I be a family of R-
modules such that Mt ∈ Specs(0)(Mt) for some t ∈ I. Consider the
following statements.

(a) M =
⊕

i∈IMi is an s-cotop module.
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(b) SpecsR(Mj) = ∅ for every t ̸= j ∈ I.

Then (a) ⇒ (b). Moreover, if SpecsR(Mt) = {Mt}, then (b) ⇒ (a).

Proof. (a) ⇒ (b). Let M be an s-cotop module and let j ∈ I with
j ̸= t. We show that SpecsR(Mj) = ∅. To see this, let Sj ∈ SpecsR(Mj).
Then by Remark 2.10 (a), K = Sj ⊕ (

⊕
j ̸=i∈I 0) ∈ SpecsR(M). Also we

have L = Mt ⊕ (
⊕

t̸=i∈I 0) ∈ Specs(0)(M). Hence K ∈ V s(L) so that

K ∈ V s∗(L) by Theorem 2.5. Thus Sj = (0), a contradiction.
(b) ⇒ (a). Let SpecsR(Mt) = {Mt}. Then SpecsR(M) = {Mt ⊕

(
⊕

t̸=i∈I 0)} by Remark 2.10 (a) and Remark 2.10 (c). Now by Corollary

2.6 (a), M is an s-cotop module. Hence the proof is compeleted.
□

Corollary 2.12. Let R be a domain with the field of fractions Q and
M ′ be an R-module, then the R-module M = Q ⊕ M ′ is an s-cotop
module if and only if SpecsR(M

′) = ∅.

Proof. This follows from Proposition 2.11 and the fact that for every
domain R with the field of fractions Q, we have SpecsR(Q) = {Q}.

□
Definition 2.13. We say that anR-moduleM is a semi-comultiplication
module if it does not have any socle submodule or each socle submodule
of M is of the form (0 :M I) for some ideal I of R.

It is easy to see that if S is a socle submodule of a semi-comultiplication
R-module M , then S = (0 :M AnnR(S)). For example, every comulti-
plication module is a semi-comultiplication module. On the other hand,
the Z-module Q is semi-comultiplication which is not comultiplication.

Remark 2.14. ([7, Lemma 3.6]). Let p and q be prime ideals of R
with q ⊆ p. Let M be an R-module with clp(0) = (0) and let ϕ :
HomR(Rp,M) → M be the natural homomorphism given by f 7→
f(1/1). Then we have the following.

(i) If S is an Rp submodule of HomR(Rp,M), then we have Sec =
S = HomR(Rp, L), where L = Se. (Here T e, where T ⊆
HomR(Rp,M), andN c, whereN ⊆M , denote ϕ(T ) and ϕ−1(N),
respectively.)

(ii) If M is an Artinian R-module and K is a q-second submod-
ule of M , then HomR(Rp, K) is a qRp-second submodule of
HomR(Rp,M) and Kc = HomR(Rp, K). Further we have
(HomR(Rp, K))e = ϕ(HomR(Rp, K)) = Ip(K) = K and Kce =
K.

Theorem 2.15. Let M be a semi-comultiplication R-module. Then
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(a) M is an s-cotop R-module.
(b) M is a weak comultiplication R-module; but the converse is not

true in general.
(c) Every submodule of M is a semi-comultiplication R-module.

But every homomorphic image of M is not necessary semi-
comultiplication R-module.

(d) If R is an integral domain and M is an Artinian R-module,
then M is either cotorsion or cotorsion-free.

(e) Let p ∈ Spec(R) and clMp (0) = (0), then HomR(Rp,M) is a
semi-comultiplication Rp-module.

(f) If R is a Noetherian ring and M is an Artinian R-module with
finite length, then M is a comultiplication R-module.

Proof. (a) Let N be a submodule of M . If sec(N) = (0), then
V s∗(N) = V s∗((0)) = V s∗((0 :M R)), so we are done. If
sec(N) ̸= (0), then sec(N) is a socle submodule of M . Hence,

V s∗(N) = V s∗(sec(N)) = V s∗((0 :M AnnR(sec(N)))).

Therefore, M is an s-cotop R-module.
(b) This is clear. To see the last assertion, set M =

⊕
i∈I Z/piZ,

where {pi}i∈I is the set of all prime integers. Then by part (a)
and Corollary 2.6 (b),M is not a semi-comultiplication module.

(c) The assertion one is clear. For assertion two, set M = Q. Q is
a semi-comultiplication Z-module, but its homomorphic image
Q/Z is not a semi-comultiplication Z-module. Because for every
prime integer p,

Zp∞ ̸= (0 :Q/Z AnnZ(Zp∞)) = (0 :Q/Z (0)) = Q/Z.

(d) If IM(0)(M) = (0), thenM is cotorsion. We assume that IM(0)(M) ̸=
(0). Hence IM(0)(M) is a (0)-second submodule by [4, Corollary

2.10]. Since M is semi-comultiplication,

IM(0)(M) = (0 :M AnnR(I
M
(0)(M))) =M.

Thus M is cotorsion-free.
(e) Let S be a socle Rp-submodule of HomR(Rp,M). It is easy to

see that ϕ(S) is a socle submodule ofM , where ϕ : HomR(Rp,M)
→ M given by f 7→ f(1/1). Hence, ϕ(S) = (0 :M I) for some
ideal I ofR. Now by Remark 2.14, we have S = HomR(Rp, ϕ(S))
and so S = HomR(Rp, (0 :M I)). One can see that

HomR(Rp, (0 :M I)) = (0 :HomR(Rp,M) IRp).

Therefore HomR(Rp,M) is a semi-comultiplication Rp-module.
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(f) By part (a) and Proposition 2.4 (a), M is an Xs-injective R-
module. Now the proof follows from [2, Theorem 2.11].

□

We are going to give an example of a module which is not semi-
comultiplication. Consider the Z-module M = Zp∞ ⊕ Zp∞ , where p is
a prime integer. Then S = (1/p + Z) ⊕ Zp∞ is a socle submodule of
M , but (1/p + Z) ⊕ Zp∞ ̸= (0 :M AnnZ(S)) = M . Moreover, M is a
cotorsion-free module. This example shows that the converse of part
(d) of Theorem 2.15 is not true in general.

The next proposition shows the behavior of s-cotop modules over
colocalizations. First we need the following lemma.

Lemma 2.16. Let p and q be prime ideals of R with q ⊆ p. Let M
be an Artinian R-module such that clMp (0) = (0). Then we have the
following.

(a) If S is a q-second submodule of M and r ∈ R, then

rHomR(Rp, S) = HomR(Rp, rS).

(b) If S is a q-second submodule of M , then

AnnR(S) = AnnR(HomR(Rp, S)).

Proof. (a) If r ∈ AnnR(S), then rHomR(Rp, S) = HomR(Rp, (0)) =

(0). Otherwise, the sequence 0 −→ S
r−→ S −→ 0 is exact because

clMp (0) = (0). Therefore, by [15, Proposition 2.4], the sequence

0 −→ HomR(Rp, S)
r−→ HomR(Rp, S) −→ 0

is exact. This implies that

rHomR(Rp, S) = HomR(Rp, rS) = HomR(Rp, S).

(b) This follows from part(a).
□

Proposition 2.17. Let p be a prime ideal of R and let M be an Ar-
tinian s-cotop R-module with clMp (0) = (0). Then HomR(Rp,M) is an
s-cotop Rp-module.

Proof. Let N be a submodule of the Rp-module HomR(Rp,M). By
Theorem 2.5, it is enough to prove that V s∗(N) = V s(sec(N)). It
is clear that V s∗(N) ⊆ V s(sec(N)). Conversely, assume that W ∈
V s(sec(N)). SinceAnnRp(sec(N)) ⊆ AnnRp(W ), we haveAnnR(sec(N))
⊆ AnnR(W ) ⊆ p. By Remark 2.14, W = HomR(Rp, S), sec(N) =
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i∈I HomR(Rp, Si), and N = HomR(Rp, L), where L ≤ M , and

S, Si ∈ SpecsR(M). It is easy to see that
∑

i∈I Si ⊆ sec(L) and so

sec(N) =
∑
i∈I

HomR(Rp, Si) ⊆ HomR(Rp,
∑
i∈I

Si) ⊆ HomR(Rp, sec(L)).

By the above arguments and Lemma 2.16, we have

AnnR(sec(L)) ⊆ AnnR(HomR(Rp, sec(L)) ⊆ AnnR(sec(N))

⊆ AnnR(W ) = AnnR(S).

Therefore, S ∈ V s(sec(L)) so that S ∈ V s∗(L) by Theorem 2.5 (c).
This implies that W ∈ V s∗(N). Hence the proof is completed.

□
Remark 2.18. (a) Let M be an Artinian R-module and let p ∈

Spec(R) such that clMp (0) = (0). Then by Remark 2.14, the
second submodules of the Rp-module HomR(Rp,M) are in a
one-to-one correspondence with those second submodules S of
M which satisfy AnnR(S) ⊆ p.

(b) Let (R,m) be a quasi local ring and let {pi}i∈I be a collection
of prime ideals of R. Then (

∩
i∈I pi)m =

∩
i∈I(pi)m.

(c) Let X, Y be two sets and let g : X → Y be a map from X
into Y . Suppose τ is an arbitrary topology on X. Set U =
{A ⊆ Y | g−1(A) ∈ τ}. Then U is a topology in Y , called the
induced topology by g in Y . We denote this topology by g(τ).
In fact U is the coarser topology in Y that g : (X, τ) → (Y, U) is
continuous. Moreover, if g is bijective, then g(τ) = {g(w)|w ∈
τ}.

We use fp to denote the natural map fp : Spec
s
Rp
(HomR(Rp,M)) →

SpecsR(M) defined by W 7→ ϕ(W ), where ϕ : HomR(Rp,M) → M
given by f 7→ f(1/1).

Theorem 2.19. Let M be an Artinian R-module and p ∈ Spec(R)
such that clMp (0) = (0). Let f : R → Rp be the canonical homomor-

phism and let f ∗ : Spec(Rp) → Spec(R) be the associated mapping.
Consider the following diagram.

(SpecsRp
(HomR(Rp,M)), τ s∗HomR(Rp,M))

fp−−−→ (Specs∗R (M), τ s∗M )

ψp

y yψ
Spec(Rp)

f∗−−−→ Spec(R)
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with natural maps. Then we have the following.

(a) The above diagram is commutative.
(b) If (R, p) is a quasi local ring, then

(i) fp is bijective.
(ii) If HomR(Rp,M) is a secondful (Xs-injective) Rp-module,

then ψ is surjective (injective) so that M is a secondful
(Xs-injective) R-module.

(iii) If HomR(Rp,M) is a cotop Rp-module, then we have

fp(τ
s
HomR(Rp,M)) ⊆ τ sM ⊆ fp(τ

s∗
HomR(Rp,M)) = τ s∗M .

Consequently, M is cotop R-module and all maps in the
above diagram are continuous.

Proof. (a) Use Lemma 2.16 (b) and Remark 2.18 (a).
(b) (i) By Remark 2.18 (a).
(b) (ii) Consider the map f ∗ : Spec(Rp) → Spec(R) given by

f ∗(q) = f−1(q), where f : R → Rp is the canonical homo-
morphism and q ∈ Spec(Rp). Then by [8, p. 46, Exercise 21],
f ∗ is a homeomorphism of Spec(Rp) onto its image in Spec(R).
Since (R, p) is a quasi-local ring, f ∗ is a surjective map so that
it is a homeomorphism. Now the claim follows from part (a)
and part (b)(i).

(b) (iii) First we show that fp(τ
s
HomR(Rp,M)) ⊆ τ sM . It is enough to

prove

fp({V s(W ) | W ≤ HomR(Rp,M)}) ⊆ {V s(N) | N ≤M}.
To see this, let

A ∈ fp({V s(W ) | W ≤ HomR(Rp,M)})
so that

A = fp(V
s(HomR(Rp, L)))

for some submodule L of M by Remark 2.14. We show that A
is closed in (SpecsR(M), τ sM) or equivalently, V s(

∑
S∈A S) = A

by [2, Proposition 5.1]. Clearly, A ⊆ V s(
∑

S∈A S). Now let
S ′ ∈ V s(

∑
S∈A S). It follows that∩

S∈A

AnnR(S) = AnnR(
∑
S∈A

S) ⊆ AnnR(S
′).

So that
∩
S∈A(AnnR(S))p ⊆ (AnnR(S

′))p by Remark 2.18 (b).
On the other hand we have

(AnnR(S
′))p = (AnnR(HomR(Rp, S

′)))p = AnnRp(HomR(Rp, S
′)).
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Thus∩
S∈A

AnnRp(HomR(Rp, S) ⊆ AnnRp(HomR(Rp, S
′)).

But S ∈ A implies that S = fp(HomR(Rp, S)) and so

HomR(Rp, S) ∈ V s(HomR(Rp, L))

or

AnnRp(HomR(Rp, L)) ⊆ AnnRp(HomR(Rp, S
′)).

It follows that S ′ ∈ fp(V
s(HomR(RP , L)) = A. To complete

the first assertion, since τ sM ⊆ τ s∗M , it is enough to show that
fp(τ

s∗
HomR(Rp,M)) = τ s∗M . As fp is bijective, it suffices to show

that

D := fp({V s∗(W ) | W ≤ HomR(Rp,M)}) = {V s∗(N) | N ≤M}.
If K ∈ D, there exists a submodule L of M such that

K = fP (V
s∗(HomR(Rp, L))

by Remark 2.14. It is easy to check that K = V s∗(L). This im-
plies that K ∈ {V s∗(N) | N ≤M}. We have similar arguments
for the reverse inclusion. Therefore, fp(τ

s∗
HomR(Rp,M)) = τ s∗M , so

M is a cotop R-module. To see the last assertion, we note that

fp : (Spec
s
Rp
(HomR(Rp,M)), τ s∗HomR(Rp,M)) → (SpecsR(M), τ s∗M )

is a continuous map by the above arguments. Also f ∗ is con-
tinuous map by [8, p. 46, Exercize 21 (i)]. Moreover, if L is a
cotop R-module, then the natural map ψ : (SpecsR(L), τ

s∗
L ) →

Spec(R) is always a continuous map (for, if I is an ideal of R,
ψ−1(V (I)) = V s((0 :M I)) = V s∗((0 :M I)) by [2, Proposition
3.6] and [2, Lemma 3.3 (c)]). As HomR(Rp,M) and M are co-
top modules, it follows that ψ and ψp are continuous as desired.
This completes the proof.

□
Corollary 2.20. Let (R, p) be a quasi-local ring and M an Artinian
R-module with clMp (0) = (0). Then M is an s-cotop R-module if and
only if HomR(Rp,M) is an s-cotop Rp-module.

Proof. (⇒) This follows from Proposition 2.17. To see the reverse
implication, since HomR(Rp,M) is an s-cotop Rp-module, we have
τ sHomR(Rp,M) = τ s∗HomR(Rp,M). Thus fp(τ

s
HomR(Rp,M)) = fp(τ

s∗
HomR(Rp,M)).

Now by Theorem 2.19 (b), we have τ sM = τ s∗M . This completes the proof.
□
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A spectral space is a topological space homeomorphic to the prime
spectrum of a commutative ring equipped with the Zariski topology.

Spectral spaces have been characterized by M. Hochster as quasi-
compact T0-space having a quasi-compact open base closed under finite
intersections and each irreducible closed subset has a generic point [13].

Lemma 2.21. Let M be a strongly cotop module and ψ be the natural
map of Xs. Then (Xs, τ s) = (Xs, τ s∗) ∼= Im(ψ).

Proof. ψ|Im(ψ) is bijective. Also we have

ψ(V s(N)) = {AnnR(S) | S ∈ Xs, AnnR(N) ⊆ AnnR(S)}
= V (AnnR(N)) ∩ Im(ψ).

This implies that ψ is continuous and a closed map by [2, Proposition
3.6]. Consequently

(Xs, τ s) = (Xs, τ s∗) ∼= Im(ψ).

□
Theorem 2.22. Let M be an R-module. Then (Xs, τ sM) and (Xs, τ s∗)
are spectral spaces in each of the following cases.

(a) M is an s-cotop R-module and Im(ψ) is a closed subspace of
Spec(R), where ψ is a natural map of Xs (in particular, when
M is a secondful R-module).

(b) Spec(R) is a Noetherian space (in particular, when R is a Noe-
therian ring).

(c) (R, p) is a quasi-local ring, M is an Artinian R-module with
clMp (0) = (0), and HomR(Rp,M) is a secondful s-cotop Rp-
module.

(d) R is a PID and M is an s-cotop R-module .
(e) R is PID and M has the property listed in (b), (c), and (d) of

Theorem 2.9.

Proof. (a) This follows from [2, Theorem 6.5].
(b) As Spec(R) is a Noetherian space, (Xs, τ s∗) is also Noetherian

by Lemma 2.21. Now the claim follows from [7, Corollary 3.3].
(c) By Theorem 2.19 (b) and Corollary 2.20, M is a secondful s-

cotop R-module. Hence by part(a), (Xs, τ sM) and (Xs, τ s∗M ) are
both spectral spaces.

(d) Let V s(N) be a closed subset ofXs for some submoduleN ofM .
If V s(N) is infinite, then AnnR(N) is contained in infinite num-
ber of prime ideals of R because M is Xs-injective by Proposi-
tion 2.4 (a). Since R is PID, this implies that AnnR(N) = (0),
so V s∗(N) = Xs. It follows that τ s = τ s∗ ⊆ τ fc. Thus
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(Xs, τ s∗ = τ s) is a Noetherian topological space and hence by
[7, Corollary 3.3], (Xs, τ s∗ = τ s) is a spectral space.

(e) This is an immediate consequence of part (d) and Theorem 2.9.
□
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